The Economics of Retirement Behavior

Olivia S. Mitchell
Cornell University

Gary S. Fields
Cornell University, gsf2@cornell.edu

Follow this and additional works at: https://digitalcommons.ilr.cornell.edu/articles
Part of the Benefits and Compensation Commons, and the Labor Relations Commons
Thank you for downloading an article from DigitalCommons@ILR.
Support this valuable resource today!

This Article is brought to you for free and open access by the ILR Collection at DigitalCommons@ILR. It has been accepted for inclusion in Articles and Chapters by an authorized administrator of DigitalCommons@ILR. For more information, please contact catherwood-dig@cornell.edu.
The Economics of Retirement Behavior

Abstract
This paper examines the role of economic factors in determining retirement behavior using a unique new data archive on more than 8,700 workers covered by 10 different pension plans. We build on our earlier work by estimating several different retirement models including both linear and discrete choice formulations. This framework provides new insights into how and why retirement ages differ across firms. We conclude that older workers' income opportunities differ depending on their pension rules, which in turn have a powerful influence on their retirement patterns. In addition, the models indicate that older workers’ tastes for income are not uniform, either across individuals or across firms. Finally, we show that retirement age differences are due in part to differences in worker preferences and in part to differences in income opportunities. There appears to be some evidence of worker sorting across pension plans.

Keywords
retirement, income, pension, age, behavior

Disciplines
Benefits and Compensation | Labor Relations

Comments
Suggested Citation

Required Publisher Statement
© The University of Chicago Press. Reprinted with permission. All rights reserved.
The Economics of Retirement Behavior

Olivia S. Mitchell, Cornell University

Gary S. Fields, Cornell University

This paper examines the role of economic factors in determining retirement behavior using a unique new data archive on more than 8,700 workers covered by 10 different pension plans. We build on our earlier work by estimating several different retirement models including both linear and discrete choice formulations. This framework provides new insights into how and why retirement ages differ across firms. We conclude that older workers' income opportunities differ depending on their pension rules, which in turn have a powerful influence on their retirement patterns. In addition, the models indicate that older workers' tastes for income are not uniform, either across individuals or across firms. Finally, we show that retirement

Both authors are equally responsible for the contents of this paper; first mention is determined randomly. Mitchell is assistant professor of labor economics, New York State School of Industrial and Labor Relations, Cornell University, and faculty research fellow, National Bureau of Economic Research. Fields is professor of economics and labor economics, New York State School of Industrial and Labor Relations, Cornell University. We wish to thank Robert Hutchens and workshop members at Cornell and NBER for helpful comments, Vivian Fields for exceptionally careful computer programming, and Rebecca Luzadis for capable research assistance. Research support was received from the U.S. Department of Labor, Cornell University, and the National Bureau of Economic Research. Opinions expressed are our own.

[Journal of Labor Economics, 1984, vol. 2, no. 1] © 1984 by The University of Chicago. All rights reserved. 0734-306X/84/0201-0006$01.50
age differences are due in part to differences in worker preferences and in part to differences in income opportunities. There appears to be some evidence of worker sorting across pension plans.

I. Introduction

Why do older workers retire when they do? Although some workers withdraw from their firms when confronted with health problems or mandatory retirement, an economic explanation, in contrast, puts more weight on the role of income and leisure opportunities as determinants of older workers’ retirement patterns.

The present paper contains several findings about the role of economic factors in retirement behavior, using a unique new data archive on more than 8,700 workers covered by 10 different pension plans. It extends our earlier work based on 390 workers in a single pension plan (Fields and Mitchell 1983a; Mitchell and Fields 1983). The point of departure in Section II is an intertemporal model in which older individuals select a retirement age from among several possible dates by comparing the utility from each alternative. Empirical implementation of this framework requires modeling expectations about future pension and earnings streams. We do this in Section III. In Section IV, various retirement models are estimated, including both linear and discrete choice formulations. We test for unobservable but systematic patterns in workers’ preferences for income relative to leisure, and evaluate the sensitivity of estimated responses to changes in income parameters. We take a different tack in Section V, exploring how and why average retirement ages differ across firms. This last issue has received only scant attention in existing literature, though it is critical in determining whether or not workers “sort” themselves into firms providing pension plans rewarding early or late retirement.

Results and policy implications are gathered in Section VI. We conclude: (1) older workers’ income opportunities differ depending on when they retire, who they are, and what their pension rules are; (2) differences in income opportunities at older ages influence retirement patterns significantly; (3) older workers’ tastes for income and leisure are not uniform either across older workers within a firm or across firms; and (4) average retirement ages vary widely across firms; some of this variation is attributable to differences in worker preferences, and some to differences in income opportunities. In addition, we find some evidence of worker sorting.

1 Gordon and Blinder (1980) provide a careful analysis of the role of poor health in retirement; a recent review of how health affects older workers is contained in Bazzoli (1983). Lazear (1979) has an interesting analysis of mandatory retirement policy.
II. Modeling Constraints and Choices

A. The Theoretical Framework

The basic model of how earnings, private pensions, and social security benefit streams affect workers' retirement ages is facilitated by examining figures 1 and 2. Figure 1 depicts the intertemporal budget set for a worker contemplating retirement, taking age 60 (or some similar age) as the starting point for retirement planning and the planning horizon as T years. Each year the individual continues to work, he receives E_t in after-tax earnings. If he retires in year R, he receives $\pi(R)$ in retirement income from private pension and social security in that year and $P(R, t)$ in retirement income thereafter. The upward slope of the π function reflects the widespread practice of providing higher initial benefits to a worker who defers retirement. Corresponding to each retirement date (e.g., R_1 and R_2) are streams of future pension benefits, denoted by $P(R, t)$. The

\[\frac{\$}{YR} \]

\[\pi(R) \]

\[E_t \]

\[P(R_1, t) \]

\[P(R_2, t) \]

\[0 \]

\[R_1 \]

\[R_2 \]

\[T \]

\[\text{AGE} \]

Fig. 1

\[\frac{\$}{(PDVY)} \]

\[U^* \]

\[0 \]

\[R^* \]

\[R_E \]

\[\text{RET} \]

Fig. 2

This paper equates the date of retirement with pension acceptance and labor force withdrawal, which proves to be an accurate description of most older workers' behavior in later life. For a discussion of partial retirement, see Gustman and Steinmeier (1981).
\(P(R, t) \) functions are flat if pension streams are constant over time; they rise if postretirement pension increases are awarded.

The monetary gain to continued work is best treated in terms of present discounted values. Let \(\delta \) be a discount factor reflecting time preference and mortality. The present discounted value of earnings is

\[
PDVE = \int_{0}^{R} E_{t} \delta_{t} dt. \tag{1}
\]

This increases with length of work life \(R \) so long as \(E_{t} > 0 \). The pension structure rewards or discourages continued work in accordance with

\[
PDVP = \int_{R}^{T} (PP_{t} + SS_{t}) \delta_{t} dt. \tag{2}
\]

When retirement is postponed, pension benefits typically are higher per year, but they are received for fewer years. If PDVP\((R)\) is constant regardless of the date of retirement, the pension structure is said to be actuarially neutral. Generally, however, neither private pensions nor social security is neutral in this sense. The total payoff from working until a particular age and then retiring is the sum of PDVE and PDVP:

\[
PDVY = \int_{0}^{R} E_{t} \delta_{t} dt + \int_{R}^{T} (PP_{t} + SS_{t}) \delta_{t} dt. \tag{3}
\]

The earnings and pension streams depicted in figure 1 produce a PDVY locus which increases monotonically in \(R \).

The choice of retirement age is determined by combining this intertemporal budget set with an intertemporal utility function, here postulated to have as its arguments present discounted value of expected lifetime income (PDVY, as given by [3]) and number of leisure years (\(RET = T - R \)).\(^3\) The control variable \(R \) is selected to maximize

\[
U = U(PDVY, RET), \tag{4}
\]

where \(U_{1}, U_{2} > 0, U_{11}, U_{22} < 0 \) subject to (3). As shown in figure 2, the goal is to achieve the highest possible utility level \(U^{*} \) consistent with the intertemporal budget set. The optimal retirement date \(R^{*} \) equates the marginal utility of income from an additional year of work with the marginal utility of one more year of leisure.

\(^3\) In empirical work below, \(RET \) was set equal to the difference between average life expectancy for males in that cohort (75.6 years) and the retirement age in question.
B. Econometric Formulations

Two different econometric models are used in the present paper to determine empirically how responsive retirement ages are to changes in the budget constraint.

The first approach takes the age of retirement as the dependent variable and estimates its sensitivity to a parameterization of the intertemporal budget set. In particular, we postulate that the PDVY function in figure 2 may be summarized by two variables: (1) base wealth (YBASE), or the present value of income available at the earliest possible retirement age; and (2) the gain in the present value of income that would be obtained by working longer and postponing retirement (YSLOPE). In earlier work (Fields and Mitchell 1983a) we showed theoretically that the age of retirement should be negatively related to YBASE, ceteris paribus, because of the ordinary negative income effect. YSLOPE, on the other hand, has a theoretically ambiguous effect on the age of retirement; a higher income gain from postponing retirement makes the worker’s leisure time more costly (inducing more work) but also provides higher income each year he does work (inducing earlier retirement). If the substitution effect dominates, the partial effect of YSLOPE on the age of retirement should be positive. These hypotheses are tested in Section IV.

While the OLS model is invaluable as a first-round approach to the age of retirement problem, it is also useful to determine what further insights are obtained from a more structured econometric procedure. An approach that proved fruitful in our earlier study of workers in a single firm (Mitchell and Fields 1983) is to model retirement in a discrete choice framework. Drawing on the pathbreaking work of McFadden (1974), we postulate that the ith worker would receive utility \(U_{ij} \) if he retired at age \(j \), where utility is composed of a “strict utility” component for the average person and a disturbance term which varies across people:

\[
U_{ij} = (\alpha \log \text{PDVY}_{ij} + \beta \log \text{RET}_{ij}) + \epsilon_{ij}. \tag{5}
\]

Here \(\alpha \) and \(\beta \) are average taste parameters to be estimated across a sample of individuals.

To close the model, we must add a distributional assumption about the \(\epsilon_{ij} \)'s. A common tactic in qualitative choice analysis is to assume that \(\epsilon_{ij} \)'s are distributed independently of one another and that each \(\epsilon_{ij} \) has the Weibull distribution. This produces a conditional multinomial logit model (MNL):

\[
P_{ij} = \frac{e^{U_{ij}}}{\sum_{j} e^{U_{ij}}}. \tag{6}
\]
As is well known, however, this distributional assumption requires
Independence from Irrelevant Alternatives (IIA); that is, the relative proba-
bilities of any two choices are unaffected by the attributes or availability
of other choice options. In particular, IIA means that there is no cor-
relation between \(\epsilon_{ik} \) and \(\epsilon_j \) (\(k \neq j \)). However, in the retirement context
there is strong reason to believe that such correlation may be important—
particularly if individuals are likely to be “workaholics” or “leisure lovers.”

In order to allow for this kind of correlation, we propose a conditional
ordered logit (OL) setup, in which the probability of choosing a given
retirement age is allowed to depend on the attractiveness of the next closest
retirement ages.\(^4\) The probability of selecting from among several ordered
choices may be approximated as

\[
P_j = \frac{e^{V_j + \alpha N_j}}{\sum_{k=1}^{K} (e^{V_k + \alpha N_k})}
\]

where \(N_j = -1/2 \left[\log \left(\frac{1}{2} \right) + \log(1 + P_{j-1}^\circ/P_j^\circ) + \log(1 + P_{j+1}^\circ/P_j^\circ) \right] \)
and \(P_k^\circ \) is the probability of selecting retirement age \(k \) under the IIA assump-
tion. \(N_j \) plays the role of a proxy for alternative-specific variation in tastes,
which otherwise would be omitted from the logit model; its coefficient
(\(\sigma \)) indicates the importance of such variation. Iterated maximum like-
lihood estimation produces estimates of the coefficients of interest, re-
ported in Section IV.

C. Data

As is evident from the previous discussion, estimating retirement models
requires that the analyst have complete information for each sample in-
dividual about (1) the actual retirement age he selected and (2) the inter-
temporal budget set he faced.

Concerning the actual retirement age, many data sets deal with indi-
viduals who have not yet retired. Our data set, a subsample of the Benefit
Amounts Survey developed by the U.S. Department of Labor, avoids
this difficulty because we include only those individuals who reached the
age of mandatory retirement by the time of the survey in 1978.\(^5\) As a
result these data are free from “censored spells” problems which plague

\(^4\) This model is developed in more detail in Mitchell and Fields (1983), following
Small (1981). A multinomial probit model might also be considered as an alter-
native estimating framework, though empirical implementation of a nine-outcome
structure is computationally infeasible.

\(^5\) Mandatory retirement ages varied across firms in the 1970s; six firms in our
sample used age 65, one used age 66, and the rest were later or had no compulsory
withdrawal age.
other labor-force modelers. At the same time, we wish to avoid mortality bias and thus select the youngest possible group of workers in the sample—those born in 1909 and 1910. The data set then consists of 8,733 males in 10 firms who retired between the ages of 60 and 68. This is a much larger group of workers than used in other studies of retirement patterns, and in addition extends the 390-retiree sample used in our own previous empirical studies.

The Benefit Amounts Survey is also exceptionally useful for building the components of each worker’s intertemporal budget set. This is because the data were collected on each worker’s years of service, birth year, and retirement year, and then the individual files were matched with Social Security administrative records and firms’ pension rules. The Social Security records provided a detailed earnings history for each worker from 1951 on, which was used to compute what each individual would have made (after taxes) had he continued to work between the ages 60 and 68. In addition, published Social Security regulations were used to compute each worker’s benefit streams for all possible retirement ages. For private pensions, descriptions of benefits rules were taken from union contracts and/or summary plan descriptions on file with the Labor Department, which we rendered computer usable by constructing complex benefit algorithms for each of the 10 plans used in the analysis.

A final modeling issue concerns the matter of identification. In conventional cross-section studies of hours of work, the econometrician observes a variety of choice outcomes and attributes some of the variability to budget set differences and some to differences in tastes and preferences across workers. In contrast, most previous retirement studies have used surveys containing no variation in budget sets across workers since all employees are covered by social security benefit rules which are uniform across the economy at any particular moment in time. In that type of data set, differences in behavior are associated with taste differences alone, since behavioral responses to budget set changes cannot be measured. The present research does not suffer from this problem, however, since

6 For years in which earnings exceeded the payroll tax ceiling, we imputed earnings using a variant of the Fox method (1976).

7 More information about the construction of the intertemporal budget set is available from the authors on request.

8 Pension descriptions in effect during the 1970s when sample members were retiring were complemented with earlier descriptions, used to determine how benefits had changed during the previous decade. The empirical analysis below builds in preretirement pension increases consistent with what each plan did during this period; since most plans did not grant postretirement increases, nominal benefits on retirement are taken to be constant. The 10 plans in our sample cannot be identified individually for confidentiality reasons; however, the sample includes four blue-collar plans negotiated by the United Auto Workers and several nonunion manufacturing and service sector plans.
our data set (described below) surveys workers from several different firms covered by different pension plans. Thus the file contains sample variation of the sort required to disentangle utility parameters from budget sets using the models described above.9

III. Earnings, Private Pensions, and Social Security Benefit Streams

The income opportunities available to each worker at all feasible retirement ages are presented in table 1. The perspective taken is a forward-looking one: we ask, from the viewpoint of age 60, What is the discounted present value of pension benefits, social security income, and earnings available to the worker if he were to retire at age 60, or age 61, or later?10 We follow standard practice by discounting each year's benefits by the probability of mortality at each age, based on survival rate information for the cohort. In addition, future benefits are deflated by inflation and a real discount rate, assumed to be 2%.

Several regularities stand out in these data. First, discounted lifetime income always increases as retirement is deferred. This is a result of higher cumulative earnings which outweigh any actuarial penalty imposed by private pension plans, and the social security penalty when retirement is deferred past age 65.11 Second, the intertemporal budget set is highly nonlinear. On average, a worker postponing retirement from age 61 to 62 would gain about $8,700, but for delaying retirement between ages 64 and 65 the worker receives a marginal gain 16% smaller. This arises

\begin{table}[h]
\centering
\caption{Present Value of Total Income (PDVY) and Its Components for Alternative Retirement Ages in 10 Plans}
\label{table:1}
\begin{tabular}{lcccccc}
\hline
 & & & & & & \\
Ten-Plan\ Mean\ & & & & & & \\
 & 60 & 61 & 62 & 63 & 64 & 65 \\
 & & & & & & \\
PDVE & 0 & 7,472 & 14,825 & 22,007 & 28,981 & 35,581 \\
PDVSS\† & 28,363 & 29,339 & 30,256 & 31,798 & 33,196 & 34,265 \\
PDVPP & 22,892 & 22,759 & 23,200 & 22,457 & 21,717 & 21,354 \\
PDVY & 51,255 & 59,570 & 68,281 & 76,262 & 83,894 & 91,200 \\
\hline
\end{tabular}
\begin{tablenotes}
\item 9 Benefits are computed only until age 65, because some of the sample plans had mandatory retirement at that age.
\item 10 Social security benefits are computed assuming the individual retires in the year in question and files for benefits when first eligible.
\end{tablenotes}
\end{table}

9 In Section V we look at the individuals in specific plans, recognizing that this issue could be raised again here. Data on variations in pension structures through time would be required to investigate this idea further; such data are not presently available.

10 The computations assume that an individual files for social security when he retires or at age 62, whichever is later.

11 Social security rules in effect in the 1980s are somewhat different; see Fields and Mitchell (1983\textit{b}).
because of the underlying nonlinearities in the pension and social security
systems and the interactions between them. Some of our sample plans
integrate benefits with social security payments, paying “early retirement
supplemental income” until the retiree is eligible for social security. The
payoff to deferring retirement is greater for some ages than for others in
all sample plans.

Another important feature of the data is that the intertemporal budget
sets vary substantially across workers. The major source of this variability
is clear from table 2, which reports means and standard deviations of
private pension income streams in each of the 10 plans. Differences in
years of service account for much of the variation in expected benefits
across workers in the pattern plans, where benefits are determined pri-
marily as a function of tenure at the firm. The conventional plans exhibit
somewhat more cross-worker variation since they include both service
and salary history in computing benefits. The fact that there are differ-
ences across workers’ intertemporal budget sets is critical in estimating
retirement responses, just as it is necessary to have wage differences in
order to trace out labor supply patterns in the cross-sectional context.

In addition to within-plan income differences, there are also across-
plan differences in income opportunities. Because the pension structures
are quite complex, it is useful to derive expected benefits for the identical
“illustrative worker” in all 10 plans; the results appear in table 3. One
striking feature is that the pattern plans in our sample tend to structure
their benefits so that they actively discourage work beyond age 60. A
pattern plan employee who defers retiring until age 65 will in fact receive
lifetime pension benefits which are about 18% lower than at age 60. On
the other hand, conventional plans’ present value streams are set up so
that the worker who defers retirement until age 65 will receive about
17% higher pension benefits than if he left at age 60. Thus, between ages
60 and 65, conventional plans improve benefits by about the same pro-
portion that pattern plans reduce them. In general, pattern plans tend
to encourage early retirement, while conventional plans encourage re-
maining on the job until age 62 and offer a flat payout schedule thereafter
(see fig. 3). We can conclude that in some plans, the present value of

12 Plan 1 was the subject of analysis in our previous empirical work. Early
retirement could not be elected prior to age 62 in plan 5, though in principle
vested benefits could be computed.

13 Additional differences in workers’ intertemporal budget sets arise from earn-
ings and years of labor market experience.

14 This pattern is consistent with those observed by Burkhauser (1976, 1979),
who studied the United Auto Workers, and by Lazear (1983), who examined
large pension plans surveyed by the Bankers’ Trust Company. Kotlikoff and Wise
(1983) also examine a large sample of plans and conclude that the expected present
value of vested benefits rises until the company’s early retirement age and then
falls thereafter.
Table 2
Present Value of Net Pension Benefits for Sample Workers at Alternative Retirement Ages: Plan-Level Data
(Standard Deviations in Parentheses)

<table>
<thead>
<tr>
<th>Pattern plans:</th>
<th>Retirement Age (Years)</th>
<th>Graphical Summary of Row Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td>Plan 1</td>
<td>28,879</td>
<td>28,425</td>
</tr>
<tr>
<td></td>
<td>(10,184)</td>
<td>(9,168)</td>
</tr>
<tr>
<td>Plan 2</td>
<td>35,200</td>
<td>35,313</td>
</tr>
<tr>
<td></td>
<td>(15,159)</td>
<td>(14,257)</td>
</tr>
<tr>
<td>Plan 3</td>
<td>33,595</td>
<td>32,740</td>
</tr>
<tr>
<td></td>
<td>(9,038)</td>
<td>(8,391)</td>
</tr>
<tr>
<td>Plan 4</td>
<td>30,390</td>
<td>29,720</td>
</tr>
<tr>
<td></td>
<td>(10,683)</td>
<td>(9,947)</td>
</tr>
</tbody>
</table>

Conventional plans:
Plan 5	0	0	1,058	2,018	3,132	7,123	7,159	6,740	6,228

Plan 6	10,939	11,739	17,518	16,658	15,705	14,682
	(6,934)	(7,101)	(9,629)	(8,934)	(8,260)	(7,591)
Plan 7	22,383	22,623	22,537	22,286	21,921	21,297
	(25,950)	(25,474)	(24,783)	(23,726)	(22,709)	(21,670)
Plan 8	30,621	32,201	32,299	31,969	30,980	30,193	28,776	27,146	25,383
	(20,618)	(20,600)	(20,878)	(20,668)	(20,324)	(19,216)	(18,558)	(17,793)	(16,992)
Plan 9	17,655	17,488	17,292	17,037	16,690	16,902	16,190	15,812	15,358
	(14,695)	(13,149)	(11,821)	(10,889)	(10,003)	(8,672)	(8,276)	(7,600)	(7,164)
Plan 10	19,256	17,341	15,480	14,970	14,492	13,876
	(8,518)	(7,307)	(6,223)	(5,494)	(4,919)	(4,420)

* Cannot be computed due to mandatory retirement provisions.
Table 3
Present Values of Net Private Pension Benefits for Illustrative Worker at Alternative Retirement Ages: Plan-Level Data

<table>
<thead>
<tr>
<th>Pattern plans:</th>
<th>Retirement Age (Years)</th>
<th>Graphical Summary of Row Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 1 $28,181</td>
<td>60 27,586 27,189 25,455 23,787 22,195 21,706 21,140 20,500</td>
<td></td>
</tr>
<tr>
<td>Plan 2 36,030</td>
<td>61 27,189 25,455 23,787 22,195 21,706 21,140 20,500</td>
<td></td>
</tr>
<tr>
<td>Plan 3 $28,176</td>
<td>62 27,189 25,455 23,787 22,195 21,706 21,140 20,500</td>
<td></td>
</tr>
<tr>
<td>Plan 4 28,176</td>
<td>63 27,189 25,455 23,787 22,195 21,706 21,140 20,500</td>
<td></td>
</tr>
</tbody>
</table>

Conventional plans:
Plan 5 0	60 9,300 10,027 10,087 10,497 9,461 8,891 7,951
Plan 6 13,527	61 19,364 18,173 16,869 9,461 8,891 7,951
Plan 7 16,410	62 16,977 17,028 16,893 9,461 8,891 7,951
Plan 8 20,012	63 19,335 18,359 17,246 16,190 15,081 13,841
Plan 9 14,851	64 15,504 16,318 17,174 16,563 15,866 15,109
Plan 10 19,491	65 15,193 14,230 13,742 13,198 12,605 11,592 10,950

Note.—Italicized numbers are row maxima. Based on pension algorithms as applied to illustrative worker; see text.

* Indicates retirement is mandatory in that plan at that age.
retirement income is quite low for an early retiree, but rises if retirement is postponed; for other plans, the structure is reversed so that early retirement is rewarded most highly and continued work is penalized by the pension plan.

In the next section we explore how these differences in income opportunities across workers and plans influence retirement age decisions.

IV. Retirement Responses to Income Opportunities

A. Results from the Linear Model

Table 4 contains a first set of findings on the question of how earnings, pensions, and social security benefits affect retirement patterns. We find that the predictions suggested by our previous research are confirmed in column 1. The coefficient on YBASE is significantly negative, indicating that persons with more base income retire earlier. In addition, the effect of YSLOPE is positive, indicating that individuals who have more to gain by postponing retirement do in fact retire later. Sixteen percent of the variance in retirement ages is accounted for by just these two variables—a high R^2 for micro data. Thus we conclude that our earlier regression findings for the employees covered by one particular pension plan are supported in this extended sample.

![Pattern vs Conventional Retirement Ages](image)

Table 4

Retirement Age Regressions for Pooled Sample ($N = 8,733$)

(\(t\)-Statistics in Parentheses)

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>64.17°</td>
<td>64.52°</td>
<td>65.40°</td>
</tr>
<tr>
<td></td>
<td>(748.94)</td>
<td>(626.56)</td>
<td>(125.71)</td>
</tr>
<tr>
<td>YBASE</td>
<td>-.039°</td>
<td>-.034°</td>
<td>-.103°</td>
</tr>
<tr>
<td></td>
<td>(32.71)</td>
<td>(24.15)</td>
<td>(5.30)</td>
</tr>
<tr>
<td>YSLOPE</td>
<td>30.41°</td>
<td>29.07°</td>
<td>55.43°</td>
</tr>
<tr>
<td></td>
<td>(23.60)</td>
<td>(22.92)</td>
<td>(6.84)</td>
</tr>
<tr>
<td>Intercept dummies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope dummies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>.16</td>
<td>.27</td>
<td>.33</td>
</tr>
</tbody>
</table>

° Statistically significant at the .05 level.
°° Statistically significant by conventional F-tests.
Having established the overall qualitative robustness of the regression results, we turn our attention to the specific quantitative magnitudes of the regression coefficients to determine whether the workers in the 10 plans exhibit basically the same quantitative responses to lifetime income opportunities. One set of tests is based on the pooled sample. Using all 8,733 workers, we introduce dummy variables allowing first for plan-specific intercept shifters (col. 2) and then also for plan-specific slope shifters (col. 3). In both models we see that the plan dummies are significantly different from zero by conventional standards. From this we conclude that the workers in different pension plans are differentially responsive to economic incentives associated with deferred retirement.

It might be thought that in addition to the parameters of the budget constraint (as measured by YBASE and YSLOPE), variations across firms in retirement ages might be associated with differences in demographic characteristics of the workers or with characteristics of the firms themselves. Variables to test these conjectures are not abundant in our data set; for some plans we did have a few additional descriptors of the workers (race, marital status), but these had no significant impact on the findings noted above. As for firm-side variables, we were able to develop dummy variables measuring the existence of a union, whether all employees were blue collar, whether the firm was in the manufacturing sector, and whether mandatory retirement prior to age 68 was in effect. When these variables are regressed on plan-level coefficient estimates obtained from column 2 of table 4, we find that unionized firms have somewhat later retirement ages and blue-collar workers retire significantly earlier, holding constant the budget constraint as measured here. These findings are consistent with nonpecuniary attributes of the job playing a role in determining retirement ages: in particular, unions may increase the attractiveness of the workplace, while blue-collar jobs are less appealing to the older worker. Since we cannot yet identify very many of the factors differentiating workers’ retirement patterns across plans, the only available option is to treat these worker and firm traits as unobservables and to develop models incorporating unmeasured systematic differences across employees. This is accomplished to a great degree by means of the discrete choice models explored next.

B. Results from the Discrete Choice Models

The jumping-off point for discrete choice modeling is the conditional multinomial logit (MNL) model. Because of the potential for differences in unobservables across firms signaled in the previous section, and because early mandatory retirement provisions were in effect in some firms but not in others, we examine the 10 pension plans one by one rather than in a pooled model. Plan-by-plan results for the MNL model appear in the left-hand columns of table 5.
Table 5
Plan-by-Plan Logit Coefficients
(Standard Errors in Parentheses)

<table>
<thead>
<tr>
<th></th>
<th>MNL</th>
<th>OL</th>
<th>MNL</th>
<th>OL</th>
<th>MNL</th>
<th>OL</th>
<th>MNL</th>
<th>OL</th>
<th>MNL</th>
<th>OL</th>
<th>MNL</th>
<th>OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDVY (α)</td>
<td></td>
</tr>
<tr>
<td>Plan 1</td>
<td>14.15*</td>
<td>14.28*</td>
<td>18.50*</td>
<td>18.92*</td>
<td>12.42*</td>
<td>15.95*</td>
<td>7.98*</td>
<td>8.05*</td>
<td>14.77*</td>
<td>4.97*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.30)</td>
<td>(.45)</td>
<td>(1.50)</td>
<td>(1.55)</td>
<td>(1.01)</td>
<td>(1.15)</td>
<td>(.39)</td>
<td>(.35)</td>
<td>(.85)</td>
<td>(.87)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan 2</td>
<td>13.71*</td>
<td>13.85*</td>
<td>16.80*</td>
<td>17.59*</td>
<td>18.65*</td>
<td>25.03*</td>
<td>10.10*</td>
<td>9.63*</td>
<td>15.71*</td>
<td>4.49*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.19)</td>
<td>(1.39)</td>
<td>(1.48)</td>
<td>(1.59)</td>
<td>(1.31)</td>
<td>(1.65)</td>
<td>(.36)</td>
<td>(.37)</td>
<td>(1.00)</td>
<td>(1.00)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RET (β)</td>
<td></td>
</tr>
<tr>
<td>Plan 1</td>
<td>-.15</td>
<td>.48</td>
<td>-2.09*</td>
<td>-1.65*</td>
<td>.68</td>
<td>.84</td>
<td>.94</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.72)</td>
<td>(.31)</td>
<td>(.30)</td>
<td>(.20)</td>
<td>(.56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan 2</td>
<td>-730.35</td>
<td>-730.33</td>
<td>-901.07</td>
<td>-899.88</td>
<td>-1,361.09</td>
<td>-1,336.41</td>
<td>-5,646.51</td>
<td>-5,612.95</td>
<td>-604.92</td>
<td>-507.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (σ)</td>
<td></td>
</tr>
<tr>
<td>Plan 1</td>
<td>.79</td>
<td>1.03</td>
<td>1.03</td>
<td>1.08</td>
<td>1.10</td>
<td>.64</td>
<td>.67</td>
<td>.84</td>
<td>.94</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan 2</td>
<td>(1.33)</td>
<td>(.26)</td>
<td>(2.82)</td>
<td>(2.91)</td>
<td>(.64)</td>
<td>(.67)</td>
<td>(3.80)</td>
<td>(6.84)</td>
<td>(.66)</td>
<td>(.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan 3</td>
<td>(1.90)</td>
<td>(2.55)</td>
<td>(.65)</td>
<td>.67</td>
<td>10.51*</td>
<td>11.12*</td>
<td>14.69*</td>
<td>22.29*</td>
<td>-7.17*</td>
<td>.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.60)</td>
<td>(.69)</td>
<td>(3.12)</td>
<td>(2.99)</td>
<td>(.78)</td>
<td>(.84)</td>
<td>(2.40)</td>
<td>(4.53)</td>
<td>(.90)</td>
<td>(.83)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan 4</td>
<td>2.46*</td>
<td>1.37*</td>
<td>-1.96*</td>
<td>-1.42*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.23)</td>
<td>(.50)</td>
<td>(.47)</td>
<td>(.65)</td>
<td>(.21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln L</td>
<td></td>
</tr>
<tr>
<td>Plan 1</td>
<td>-1,917.33</td>
<td>-1,863.99</td>
<td>-226.70</td>
<td>-222.84</td>
<td>-1,362.03</td>
<td>-1,359.94</td>
<td>-198.33</td>
<td>-196.06</td>
<td>-1,626.04</td>
<td>-1,438.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan 2</td>
<td>N.S.*</td>
<td>.95</td>
<td>N.S.</td>
<td>N.S.</td>
<td>.78</td>
<td>.78</td>
<td>1.45</td>
<td>1.46</td>
<td>N.S.</td>
<td>N.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio α/β</td>
<td></td>
</tr>
</tbody>
</table>

* t > 1.96.
† N.S. = one component not significantly different from zero.
For all 10 plans, the MNL results indicate that the income opportunities for different retirement ages (PDVY) are significant determinants of retirement patterns. In eight of the 10 plans, workers also appear to value leisure years (RET) significantly. However, before accepting these findings based on the MNL model, it is necessary to test the validity of its underlying assumption—the Independence from Irrelevant Alternatives (IIA).

One test of IIA was suggested by Hausman and McFadden (1981). It is a χ^2 test statistic that compares the estimated MNL coefficients from the full sample with new coefficients obtained from estimating an MNL model on a subsample of individuals who chose a specific subset of alternatives. Such calculations for the subsets age 60 through 65, and 60 through 62, appear in panel A of table 6. The calculated value of the test statistic surpasses the critical value in all but one firm for which the test could be performed. This is strong evidence against IIA: tastes for leisure are not uniform in the older population.

The second IIA test compares the predicted frequency distribution of retirement ages under MNL, where IIA is required, with the predicted distribution obtained from the ordered logit model, where IIA is relaxed. By this test, reported in panel B of table 6, the calculated test statistic surpasses the critical χ^2 value in six of the 10 plans. Thus IIA should also be rejected in the majority of the cases by this second test.

Taken together, these tests suggest that the ordered logit (OL) model, in which IIA is not maintained, better suits the retirement problem. An examination of the OL coefficient estimates (right-hand columns for each plan in table 5) indicates the importance of both income and leisure as determinants of retirement ages. PDVY is statistically nonzero in all 10 plans, and RET enters significantly in eight of 10 plans. The results are similar to MNL findings in some cases, for example, the ratio α/β and the log-likelihood ratio for plan 8 are virtually identical. However, in other cases the results are quite different: for plan 5, the ratio α/β changes by about 18% and the log-likelihood ratio rises by 16% when going to

15 The Hausman-McFadden statistic is defined as $T = (\theta_r - \theta_0)' [\text{cov}(\theta_r) - \text{cov}(\theta_0)] (\theta_r - \theta_0)$, where θ_r is the coefficient vector estimated for the full model; θ_r is the coefficient vector estimates among individuals choosing a subset of the total choice set; $\text{cov}(\theta)$ refers to the relevant parameter covariance matrix; and t denotes a generalized inverse. The test statistic is interpreted such that a value of T larger than a χ^2 critical value rejects IIA; degrees of freedom are computed as $df = tr[\text{cov}(\theta_r) - \text{cov}(\theta_0)][\text{cov}(\theta_r) - \text{cov}(\theta_0)]$.

16 The test cannot be performed where retirement was mandatory at age 65 or when no worker in a particular plan chose to retire before age 62.

17 These variations may be indicative of differences in health or nonlabor income, factors which are not reported in our data set.

18 Only the ratios of logit coefficients are identified, not the individual α or β coefficients.
Table 6
Testing IIA with Plan-Level Data

<table>
<thead>
<tr>
<th></th>
<th>Pension Plan Number</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Hausman-McFadden statistics:</td>
<td></td>
</tr>
<tr>
<td>T-value for subset:*</td>
<td></td>
</tr>
<tr>
<td>60–65</td>
<td>17.16</td>
<td>23.39</td>
<td>N.A.</td>
<td>147.32</td>
<td>112.68</td>
<td>N.A.</td>
<td>N.A.</td>
<td>183.47</td>
<td>15.24</td>
<td>N.A.</td>
</tr>
<tr>
<td>60–62</td>
<td>65.85</td>
<td>63.27</td>
<td>111.99</td>
<td>59.72</td>
<td>141.89</td>
<td>21.09</td>
<td>N.A.</td>
<td>58.74</td>
<td>N.A.</td>
<td>33.88</td>
</tr>
<tr>
<td>χ² statistics:</td>
<td></td>
</tr>
<tr>
<td>MNL vs. SOL†</td>
<td>691.65</td>
<td>.60</td>
<td>36.72</td>
<td>52.61</td>
<td>1,217.25</td>
<td>82.33</td>
<td>12.67</td>
<td>1.74</td>
<td>2.19</td>
<td>427.43</td>
</tr>
</tbody>
</table>

NOTE.—N.A. = statistic could not be computed; see text.

* Critical value 10.6 (at \(p = .005 \)).
† Critical value 22.0 (at \(p = .005 \)).
ordered logit. In addition, the fact that the coefficient (σ) is statistically nonzero in eight out of 10 cases suggests that relaxing the IIA assumption makes a difference.

Focusing just on the OL results, we note that the relative importance of income versus leisure as measured by α/β varies across firms by a factor of about $21/2$: from 0.64 in plan 3 to 1.46 in plan 9. These findings buttress our conclusions from the linear models: workers in all firms react to income and leisure opportunities in selecting retirement dates, but they differ across firms in the way they react to the income and leisure opportunities associated with deferred retirement.

Because OL coefficients are rather difficult to interpret directly, it is of interest to compute explicitly how sensitive retirement ages are to changes in budget set parameters. Six parametric changes in budget sets are considered: (a) each worker’s earnings stream is increased by 10% of his base (age 60) earnings amount; (b) each worker’s earnings stream is tilted such that earnings at every age are increased by 10%; (c) the pension benefit at each age is increased by 10% of the age 60 amount; (d) the slope of the pension function is raised by 10%; (e) the social security benefit stream is raised by 10% of the initial amount; and (f) the slope of the social security function is increased by adding 10% to every year’s benefits. Estimated coefficients from table 5 are combined with these alternative budget sets in order to determine how each individual would be likely to alter his retirement date. Changes for the group as a whole are obtained by summing individual changes in predicted probabilities for each age.

Table 7 reports the findings for the preferred OL specification in column 1; parallel estimates for the MNL model appear in the second column. A 10% increase in earned income is predicted to increase the average retirement age by about 0.1 years, or a little over a month. A rise in earnings has both income and substitution effects, and in this case, the substitution response appears to dominate. In contrast, raising retirement benefits by increasing either private pensions or social security would

<table>
<thead>
<tr>
<th>10% Change in</th>
<th>Effect of Change in Budget Set on Mean Retirement Age (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOL Results</td>
</tr>
<tr>
<td>Base earnings</td>
<td>.11</td>
</tr>
<tr>
<td>Each year’s earnings</td>
<td>.14</td>
</tr>
<tr>
<td>Base pension</td>
<td>-.12</td>
</tr>
<tr>
<td>Each year’s pension</td>
<td>-.08</td>
</tr>
<tr>
<td>Base social security</td>
<td>-.13</td>
</tr>
<tr>
<td>Each year’s social security</td>
<td>-.06</td>
</tr>
</tbody>
</table>
lower the retirement age by a little less than a month, on average. Changing the value of early retirement benefits has a larger effect than altering the gain to deferring retirement, for both pensions and social security. This is because raising only early retirement benefits produces an income effect favoring more leisure consumption; raising the slope of the benefit stream elicits an additional substitution response in the opposing direction.

Several conclusions emerge from this analysis. First, we find that for every plan, higher earnings would result in later retirement, whereas higher pensions or social security benefits would induce earlier retirement. Second, the ordered logit model provides larger estimates of behavioral responses to changes in income parameters, as compared to the MNL approach. This arises from the fact that the OL setup allows nearby retirement ages to be "closer" to the date initially chosen than does the MNL model. Consequently, when the budget constraint changes, the OL responses are on average 30% larger as compared to the responses estimated assuming IIA. Third, the difference that OL makes varies across plans; looking across the 10 plans we find less of a quantitative difference between OL and MNL than had been detected in our earlier work on a single plan. This is the only quantitative difference between our findings in the larger sample and earlier results. Fourth, we conclude that retirement ages are responsive to budget set parameters, but the degree of responsiveness is relatively small. In general, rather large changes in policy variables such as taxes or benefits would be required in order to elicit substantial changes in retirement ages.

V. Why Do Retirement Ages Differ across Pension Plans?

A. Retirement Ages in 10 Plans

In contrast to previous sections, the focus here is on retirement age differences across pension plans rather than across individuals. That retirement ages do differ across plans is demonstrated in table 8: the overall retirement age across all 10 pension plans is 63.7, but plan averages range from 61.8 to 65.7 years of age. Several explanations are possible: either the economic incentives for retirement differ systematically across plans, or workers’ preferences for income and leisure vary systematically across

19 Gordon and Blinder (1980) also find a greater retirement response to wages than to pensions and social security, though the data set they use did not contain as much information on benefit structures as is available here.

20 Research investigating other data sets and policy reconfirms the small size of the retirement response described here (Fields and Mitchell 1983b). Evidently the intertemporal labor supply response parameter is comparable in size to those measured for similar workers in cross-section data (see, e.g., Cain and Watts 1973) and in the life-cycle setting of Heckman and MaCurdy (1980).
plans, or both factors may be important. While a larger sample would be necessary for a thorough investigation of these explanations, it is of interest to explore the suggestive evidence provided by the 10 plans for which information is presently available.

B. Retirement Ages and Worker Preferences

Our earlier analysis used OL models to develop plan-specific estimates of the weights workers attach to income relative to leisure (α/β). In order to see whether retirement ages and workers' tastes are associated across plans, we correlate each plan's ratio of α/β with its average retirement age (\bar{R}).\(^{21}\) We find that in fact this ratio covaries with retirement age almost exactly, producing a correlation coefficient between \bar{R} and α/β of .94. This finding suggests that plans that have later average retirement ages are also those where workers on the average have stronger relative preferences for income versus leisure.

C. Retirement Ages and Income Opportunities

We now investigate whether differences in budget constraint parameters across plans help explain plan-level differences in retirement ages. This issue can be analyzed in two ways: (1) Do plans offering more income for early retirement have earlier average retirement ages (holding constant the rewards from deferring retirement)? (2) Do plans offering a greater reward for postponing retirement have higher average retirement ages (for a given early retirement benefit)?

One way to operationalize both questions is to determine the degree of association between average retirement ages (\bar{R}), the present value of

<table>
<thead>
<tr>
<th>Retirement Plan</th>
<th>Retirement Age in Years (\bar{R})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 1</td>
<td>63.27</td>
</tr>
<tr>
<td>Plan 2</td>
<td>63.53</td>
</tr>
<tr>
<td>Plan 3</td>
<td>61.82</td>
</tr>
<tr>
<td>Plan 4</td>
<td>62.77</td>
</tr>
<tr>
<td>Plan 5</td>
<td>64.67</td>
</tr>
<tr>
<td>Plan 6</td>
<td>63.18</td>
</tr>
<tr>
<td>Plan 7</td>
<td>64.71</td>
</tr>
<tr>
<td>Plan 8</td>
<td>63.17</td>
</tr>
<tr>
<td>Plan 9</td>
<td>65.69</td>
</tr>
<tr>
<td>Plan 10</td>
<td>64.17</td>
</tr>
<tr>
<td>Overall mean</td>
<td>63.70</td>
</tr>
</tbody>
</table>

\(^{21}\) The ratio α/β was computed only where the underlying OL coefficients were statistically significant. We interpret this ratio as a measure of relative preference for income vs. leisure, although it may reflect worker tastes for job characteristics as well.
income available to an early retiree (YBASE), and the change in the present value of income if retirement is deferred until age 65 (YSLOPE). For our sample of plans the coefficient of partial correlation between retirement age and YBASE proves to be -0.58, and that between retirement age and YSLOPE $+0.30$. Therefore we can conclude that some of the variation in retirement ages across plans is attributable to differences in income opportunities available to workers covered by the plans, though not as much as was attributed to differences in worker preferences.

D. Is There Sorting?

Firms and workers may sort themselves according to their respective preferences for continued work. Firms may differ according to the productivity value of additional seniority: presumably older workers are less productive per dollar expended in some industries than they are in others. Such firms would be expected to create incentives for older employees to leave at relatively young ages. One way to do this is to create pension benefits that are larger for workers who retire early. If workers are aware of the differential incentives offered by different employers, those individuals who have relatively high tastes for leisure would seek employment in firms offering higher early retirement benefits. Empirically, this leads us to expect that our measure of the relative strength of worker preferences for income versus leisure (α/β) should be negatively related with the pension plan's early retirement income level (YBASE). In fact the correlation of α/β and YBASE is -0.45, suggesting that sorting of this type does indeed take place.

VI. Conclusions and Implications

The analysis reported here is based on a larger and richer data set than has been previously available to researchers studying retirement issues. Of course, the sample should be expanded even further before attempting to generalize beyond this group of employees and pension plans, and we expect future research to go in this direction. The evidence developed thus far suggests four major findings:

1. Older workers' income opportunities differ depending on when they retire, who they are, and what their pension rules are. For a given individual, payoffs to continued work are greater at some ages than at others; in general private pensions and social security appear not to be actuarially neutral. Even within a pension plan, income opportunities vary across workers as a function of seniority and salary histories used to compute retirement benefits. Across pension plans there are also large differences: in some firms, the present value of retiring early is low but rises if the worker defers retirement; in other firms, the structure is reversed so early retirement is rewarded but continued work penalized.

2. Differences in income opportunities at older ages influence retirement
patterns significantly. Individuals with more income at age 60 retire earlier; however, retirement is delayed if the worker stands to gain more by working longer. In addition, the degree of responsiveness to income opportunities depends on the attractiveness of other, nearby retirement ages. Changes in earnings have a stronger impact on retirement patterns than would the same percentage change in private pension or social security benefits.

3. Tastes for leisure and income are not uniform either across older workers with a firm or across firms. The data reject a model that imposes IIA in favor of models which allow for within-individual taste correlation ("workaholism").

4. Average retirement ages vary widely across firms; some of this variation is attributable to differences in worker preferences, and some to differences in income opportunities. In addition, there is some evidence of worker sorting: those individuals who place a high value on work and the income derived from working are found in firms which provide greater financial rewards for remaining on the job at older ages.

Overall, though many factors influence retirement behavior, our work shows that retirement patterns are closely linked to the economic incentives for dererring retirement. The policy implications of this finding are evident: government practices which alter the rewards for retirement will influence older workers’ labor market behavior in predictable ways. For instance, reducing early social security benefits or raising the payroll tax (leaving all else the same) would encourage individuals to remain in the labor force, though our results indicate a relatively small response.22

Future research should inquire whether differences in response patterns identified here are correlated with other worker and/or firm characteristics, such as health or job requirements. Our findings on worker sorting also deserve further attention in future research. Evidence presented here suggests that firms and workers attempt to structure their pension structures in a mutually agreeable manner. Thus planners charged with making pension policy would do well to consider how specific reforms would alter existing structures, and to ascertain whether such reforms are in fact beneficial to firms and/or their employees.

References

22 A series of specific reforms in social security benefit and tax rules are explored in Fields and Mitchell (1983b) using a nationally representative data set on older workers.

