6-21-1993

Influence of Technology on the Workplace and Worker-Management Relations

David C. Cranmer
National Institute of Standards and Technology, U.S. Department of Commerce

Follow this and additional works at: https://digitalcommons.ilr.cornell.edu/key_workplace

Part of the Human Resources Management Commons

Thank you for downloading an article from DigitalCommons@ILR.
Support this valuable resource today!

This Report is brought to you for free and open access by the Key Workplace Documents at DigitalCommons@ILR. It has been accepted for inclusion in Federal Publications by an authorized administrator of DigitalCommons@ILR. For more information, please contact catherwood-dig@cornell.edu.

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.
Influence of Technology on the Workplace and Worker-Management Relations

Disciplines
Human Resources Management

Comments
Report Submitted to the Commission on the Future of Worker-Management Relations

Suggested Citation
INFLUENCE OF TECHNOLOGY ON THE WORKPLACE AND WORKER-MANAGEMENT RELATIONS

David C. Cranmer
National Institute of Standards and Technology
U.S. Department of Commerce
Technology Influences

- Technology can be both beneficial and destructive
- Has generated controversy since at least the beginning of the Industrial Revolution (Luddites)
- Over the long run, the benefits have been long term, and the disruptions, though frequently painful, have been short term
- Has been a recurrent topic of public policy debate - National Commission on Technology, Automation, and Economic Progress, 1966
- Technology means change: how resources (people and financial) are invested/directed
Benefits and Problems

- Electronics Industry Example
 - In the 1950's, electronic devices were based on vacuum tube technology. With the invention of the transistor (1948), vacuum tube technology started to become obsolete.

 - In the short run, workers making vacuum tubes were displaced, as new semiconductor devices penetrated the market.

 - In the long run, semiconductor companies, as a group have become one of the largest employers (170,000 employees U.S., 1993) and have a manufactured market value of $39 billion (North American-based companies). These companies utilize sophisticated manufacturing processes and require a very skilled workforce.
Technology Changes

• Response to marketplace demands
• Increases productivity, if properly applied
• Creates and destroys jobs
• Creates new fields of endeavor
• Affects both manufacturing and service industries
• Leads to changes in the workplace
Emerging Technologies

- Critical and Emerging Technologies Lists
 - National Critical Technologies Panel
 - DOD Critical Technologies
 - DOC Emerging Technologies
 - Council on Competitiveness
 - Japanese List
 - European Community List

- Technology Categories
 - Materials
 - Manufacturing
 - Information and Communications
 - Biotechnology and Life Sciences
 - Aeronautics and Surface Transportation
 - Energy and Environment
<table>
<thead>
<tr>
<th>Behind</th>
<th>Versus Japan</th>
<th>Versus Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advanced Materials</td>
<td>Digital Imaging Technology</td>
</tr>
<tr>
<td></td>
<td>Advanced Semiconductor Devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital Imaging Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-Density Data Storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optoelectronics</td>
<td></td>
</tr>
<tr>
<td>Even</td>
<td>Superconductors</td>
<td>Flexible Computer-Integrated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manufacturing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superconductors</td>
</tr>
<tr>
<td>Ahead</td>
<td>Artificial Intelligence</td>
<td>Advanced Materials</td>
</tr>
<tr>
<td></td>
<td>Biotechnology</td>
<td>Advanced Semiconductor Devices</td>
</tr>
<tr>
<td></td>
<td>Flexible Computer-Integrated</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td></td>
<td>Manufacturing</td>
<td>Biotechnology</td>
</tr>
<tr>
<td></td>
<td>High-Performance Computing</td>
<td>High-Density Data Storage</td>
</tr>
<tr>
<td></td>
<td>Medical Devices and Diagnostics</td>
<td>High-Performance Computing</td>
</tr>
<tr>
<td></td>
<td>Sensor Technology</td>
<td>Medical Devices and Diagnostics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optoelectronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensor Technology</td>
</tr>
</tbody>
</table>

From: Emerging Technologies, A Survey of Technical and Economic Opportunities
U.S. Department of Commerce, Spring 1990
U.S. REPORT CARD: TRENDS

<table>
<thead>
<tr>
<th>Losing Badly</th>
<th>Versus Japan</th>
<th>Versus Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Materials</td>
<td></td>
<td>Digital Imaging Technology</td>
</tr>
<tr>
<td>Biotechnology</td>
<td></td>
<td>Flexible Computer</td>
</tr>
<tr>
<td>Digital Imaging Technology</td>
<td></td>
<td>Integrated Manufacturing</td>
</tr>
<tr>
<td>Superconductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Semiconductor Devices</td>
<td></td>
<td>Medical Devices and Diagnostics</td>
</tr>
<tr>
<td>High-Density Data Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Performance Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Devices and Diagnostics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optoelectronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superconductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td></td>
<td>Advanced Materials</td>
</tr>
<tr>
<td>Flexible Computer-Peptide</td>
<td></td>
<td>Advanced Semiconductor Devices</td>
</tr>
<tr>
<td>Integrated Manufacturing</td>
<td></td>
<td>High-Density Data Storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optoelectronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensor Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superconductors</td>
</tr>
<tr>
<td>Holding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td></td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>Flexible Computer-Peptide</td>
<td></td>
<td>Biotechnology</td>
</tr>
<tr>
<td>Integrated Manufacturing</td>
<td></td>
<td>High-Performance Computing</td>
</tr>
</tbody>
</table>

From: Emerging Technologies, A Survey of Technical and Economic Opportunities
U.S. Department of Commerce, Spring 1990
Jobs Created/Destroyed

- Grocery Industry Example
 - Computerized inventory and ordering system coupled with optical scanner and bar code technology replaces stock clerks' inventory function, and replaces other clerical workers
 - Creates manufacturing jobs in optical scanning industry as well as in their suppliers, such as for optical scanner window materials
 - More jobs are lost than created, but those created are generally higher paying based on their being more knowledge-intensive
 - Jobs created are not necessarily located in the same geographic region
 - What happens to those workers who are displaced?
Technology Examples

- Information and Communication
 - National Information Infrastructure
 - Government-industry partnership to develop and implement computing and networking technology essential for total electronic commerce
 - Relies on advances in many emerging technologies

- Products
 - Personal computer, did not exist 20 years ago
 - Now ubiquitous with vast variety of applications
 - Increases ability to create, store, analyze, and access information

- Processes
 - Circuit creation for PC and other applications
 - Sophisticated process requiring clean manufacturing facilities, standards, and skilled workforce
Manufacturing Technology

- Flexible Manufacturing
 - Allows creation of two or more products on the same manufacturing line
 - Relies on adaptability of manufacturing hardware and people running it
 - More sophisticated systems use extensive on-line sensing and control systems to replace workers
Manufacturing Technology

- Computer Aided Design/Computer Aided Manufacturing
 - CAD/CAM
 - Allows simulated creation and fabrication of products using computers and networks
 - In principle, and in limited practice, electronic designs can be translated into code required for making components via computer numerically controlled (CNC) machine tool
 - Extensive work required to establish interchange standards and protocols
 - CAM portion requires extensive use of computers and sensors at all stages of the process
Manufacturing Technology

• Electronic Commerce
 - Exchange of product and business information about manufacturing needs/opportunities
 - Allows creation of "virtual" corporation or joint venture to manufacture specific product; all partners do what they do best, wherever they are located
 - Allows creation of "virtual" office (laptop computer, cellular telephone, portable fax) for on-the-road staff (e.g., sales force)
 - Requires extensive interactions between all levels of all the partners and ability to exchange information rapidly, correctly, and securely
Economic and Competitiveness Strategies

- Quality
- Speed to market
- Sales/marketing
- After-sale service
Decision Making

- Quality strategy pushes to lowest level possible
- Requires practice and willingness to take responsibility for action
- Ability to make judgements limited or enhanced by experience and education
Training Needs

• More sophisticated flexible manufacturing environment requires well educated and trained workforce that can be continually upgraded

• Apprentice programs where appropriate

• Exposure to variety of opportunities and experiences enhances judgement

• Requires interested and committed individuals and companies

• Enhancement of skills available to all employees for all jobs within the company?
Summary

- Advances in technology are forcing changes in the workplace and will require changes in the workforce
- A variety of technologies will be important
- Worker-management relations need to change to adapt to the changes in technology