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Abstract

Combining statistical information across studies is a standard research tool in applied

psychology. The most common approach in applied psychology is the fixed effects model. The

fixed-effects approach assumes that individual study characteristics such as treatment

conditions, study context, or individual differences do not influence study effect sizes. That is,

that the majority of the differences between the effect sizes of different studies can be explained

by sampling error alone. We critique the fixed-effects methodology for correlations and propose

an advancement, the random-effects model, that ameliorates problems imposed by fixed-effects

models. The random-effects approach explicitly incorporates between-study differences in data

analysis and provides estimates of how those study characteristics influence the relationships

among constructs of interest. Because they can model the influence of study characteristics, we

assert that random-effects models have advantages for psychological research. Parameter

estimates of both models are compared and evidence in favor of the random-effects approach is

presented.
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Meta-analysis offers the potential to combine information from a number of studies to

provide a concise information summary about relationships of interest. As such, meta-analysis

is one of the most powerful and useful statistical techniques available to researchers. The ideas

of combining information go back as far as Legendre (1805) in an attempt to use astronomical

observations collected at several different observatories to estimate the orbits of comets and

Gauss (1809) to determine the meridian arcs in geodesy. Earlier in this century, Birge (1932)

was among the first to combine estimates across experiments at different laboratories to

establish reference values for the fundamental constants of physics. Around the same time

techniques for combining information across agricultural experiments were being developed by

Cochran (1937), Cochran and Yates (1938), Trippett (1931), and Fisher (1932). These

techniques were extended by Glass (1976). In applied psychology, the message about

meta-analysis brought by Hunter, Schmidt, & Jackson (1982) caused an important

transformation in research. These researchers demonstrated that information from multiple

studies can be combined in meaningful ways. In their validity generalization research, they

showed that selection procedures could be generalized across occupations and organizations.

This means that separate and costly validity studies on a particular selection procedure may not

be needed for each individual occupation.

In applied psychology, the most common meta-analytic technique for correlations is the

fixed-effects model (Hunter & Schmidt, 1990). In fact, until now researchers in the field have

relied almost exclusively on the fixed-effects model and have not used other methods, such as

the random-effects models. Given the availability of these alternative models, we argue that

psychologists should take advantage of random-effects models because of their superior

statistical and analytic qualities. In 1992 a panel of experts on meta-analysis, commissioned by

the National Research Council to evaluate the state of knowledge about meta-analysis, stated

that the fixed effects model carries with it restrictive and often incorrect methodological

assumptions. The panel concluded by stating "[meta-analytic] modeling would be improved by

the increased use of random effects models in preference to the current default of fixed effects

models (National Research Council, 1992:185)." Drawing upon advances in theoretical and

applied statistics, this paper presents an overview of the random-effects model and compares it

to the fixed-effects approach.

Random- versus Fixed-Effects Model--Conceptual Differences

The underlying assumption of meta-analysis is that combining information from

independent, but similar studies, improves the estimation of population parameters over that

obtained from any single study. It is useful to compare a meta-analysis to a regression situation
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where the researcher wishes to understand the variability in a random variable, say

organizational commitment (Yi).   In the simplest case, the researcher has only the mean (Y ) to

use in estimating Yi.  A more sophisticated approach is to use information from an explanatory

variable, for example the amount of pay an incumbent receives (Xi), in a regression of Yi on Xi

such that Yi  = β0 + β1Xi + εi.  The use of β1 to relate Xi and Yi is superior to Y because much

more can be learned about how Yi varies systematically with Xi. Furthermore, including εi is

important because it accounts for factors excluded from the model that also cause variance in

Yi.  The model might be improved by using multiple predictor variables, Xij, such as various job

characteristics in addition to pay information, that are theoretically important for understanding Y

so that Yi  = β0 + β1Xi1 + β2Xi2 + . . . + βjXij  + εi.  Finally, the theory might suggest that group

differences, such as company size or the industry group (Wqj), influence the effect of each Xij on

Yi.  An improved model would account for these differences in the effect of Xij by modeling how

the βj’s systematically vary due to these group differences. Often this is accomplished through

interactions, but an improved approach is to account for the systematic variance in the βj’s by a

second stage model where βj = γ0 + γq Wqj + . . . + uj (Bryk & Raudenbush, 1992). In this model

group differences in the βj’s can be explained by group-level covariates, the Wqj’s--and uj

operates like εi by accounting for factors that cause systematic variation in βj that are excluded

from the model. Meta-analyses can be grouped in a similar fashion, drawing distinctions

between "fixed-effects" and "random-effects" models. Fixed-effects are analogous to using the

mean while random-effects are analogous to using a regression.

Suppose k studies provide information about an unknown correlation coefficient p. The

meta-analyst wishes to use information contained in all k studies to derive an estimate of the

true effect size ρ. However, since the k studies are not identical, statistical theory directs the

meta-analyst to take into account the different sources of variation that might influence the

estimation of ρ. In the random-effects model, two sources of variation are taken into account:

within studies and between-studies variance. Random-effects models assume that the studies

are heterogeneous, that is, the studies differ on important factors that influence study results.

This is indeed likely to be the case in meta-analyses as the researcher is combining information

across different studies where study context, treatments, research procedures, and group and

individual characteristics are likely to be different. These two sources of variation are estimated

in the random-effects model in hierarchical manner. The first level accounts for within-studies

variance that influences individual study parameter estimates. Factors such as sample size,

restriction of range, and reliability of the measurement tools are the main causes of this source
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of variance (Hunter & Schmidt, 1990, Part 11). The second level error component, the uj's,

accounts for the influence of the between-studies characteristics such as study context (e.g.,

organization size, human resources strategies, cultural differences) on observed study effect

sizes. The statistical form of this random-effects model is represented by the following set of

equations:

ri = ρi + ei ei ~ N(0,σ2) [1]

ρi = ρ + ui ui ~ N (0,τ2) [2]

where ri and ρi are the observed and population correlation coefficients of study i, respectively, ρ

is the population correlation coefficient for the entire population of studies, ei is the

within-studies variance, and ui is the effect of between-studies differences on the correlation

coefficient of study i, 1 <  i < k . From this set of equations it is clear that the random effects

model accounts for the influence of differences across studies on individual study effect size

estimates. Here, the obtained estimate of ρi is similar to the βj in a regression. The total variance

of ri is divided into two components:

Var(ri) = Var(uI + ei) = τ2 + σ2. [3]

By including covariates, the model can be extended to include factors which account for

systematic group differences that influence the ρi 's and hence explain variance in the individual

rI’s. This is analogous to the use of Wqj's in a regression situation mentioned above.

The premise of the fixed-effects model, on the other hand, is that differences between

study effect sizes are only due to within-studies error variance; variation in parameter estimates

(e.g., study correlation coefficients) is not due to systematic differences in study characteristics.

For example, in organizational research this means that compensation policies, training

programs, selection systems and other organizational policies do not influence psychological

phenomena under study. The only variance that exists is within-study or random sampling error.

Consequently, rather than a distribution of correlations across studies, the fixed-effects model

assumes there is only one fixed and true population correlation, ρ.  Accordingly,

ri = ρ + eI    eI ~ N(0,σ2) [4]

for 1 < i < k . In psychology, the most often used fixed-effects approach (Hunter & Schmidt,

1990) asserts that the average study correlation ( r ) is the appropriate estimate of the

population correlation coefficient. This is analogous to using the mean Y  as an estimator.

Although the fixed-effects model is clearly a submodel of the more general random-effects

approach, fundamental differences separate these two models. While the random-effects model

takes into account different sources of variation, the fixed-effects model places a restrictive
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assumption on parameter estimation: that between-studies variance is zero (τ2=0). It is therefore

essential to ascertain whether this assumption is justified before applying the fixed-effects

model.

Considering the nature of constructs studied in psychology and other social sciences, it

seems that the 'homogeneity of studies' assumption is rarely met. Asserting that

between-studies variance is zero is tantamount to stating that study context and procedures,

individual differences, organizational practices, situational conditions, and cultural differences

have no affect on the relationships among constructs of interest. The homogeneity assumption

implies that pure relationships between variables can be effectively isolated in studies. Until

recently, the predominant belief in the social sciences opposed this view. The following

represents just a short list of the views of leading methodologists in the field about the

homogeneity assumption:

There is little question but that sizable differences, correlations, etc., in samples,... speak
more strongly of sizable differences, correlation, etc., in the population (Bakan,
1966:429).

...the notion that correlations between arbitrarily paired [psychological] variables will be,
while not literally zero, of such minuscule size to be of no importance, is surely wrong
(Meehl, 1990:208).

It is difficult to focus on the critical features of a particular problem in behavioral science
when they occur in the midst of so much other stuff that may or may not affect the result
(Campbell, 1990:46).

Even the strongest advocates of the fixed-effects model have stated that:

... studies are never perfect. Thus, the relationship between study correlations and
actual correlations is more complicated … The complexity of formulas depend on two
things: (a) the extent of variation in artifacts [within studies variance] and (b) the extent of
variation in actual correlations [between-studies variance] (Hunter & Schmidt, 1990:43).

Accordingly, Hunter and Schmidt (1990) concluded that, when between-studies variance

exists, using the fixed-effects approach to overall meta-analysis is not meaningful. These

authors recommend that, in the case where substantial differences between studies exist,

sub-groups of studies should be formed on the basis of moderator variables. Meta-analysis

should be conducted on these sub-groups of similar studies and not on the overall pool of

studies. This suggests that, before applying the fixed-effects approach, one should first estimate

and verify that between studies variance is indeed inconsequential. Only when it is

inconsequential can one use the fixed effects approach. The Hunter and Schmidt (1990; Part II)

fixed-effects model purports to do exactly that. The preliminary assumption of this method is

similar to that of the random-effects model, that two sources of variance might influence
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observed correlations. These sources are the within-studies variance (σe
2) and the between

studies variance (σρ
2). The fixed-effects model (Hunter & Schmidt, 1990) beings with the

following assumption:

σr
2 = σρ

2 + σe
2 [5]

where σr
2 is the total variance of observed study correlations1.

To determine if between-study variance is consequential, the fixed-effects model (Hunter

& Schmidt, 1990) proceeds as follows. Having selected a group of studies which investigate

specific theoretical relationships, the procedure begins with the computation of a weighted

average correlation across studies ( r ) and the variance of these observed study correlations,

σr
2. Next, the analyst adjusts the variance of observed correlations (σr

2) for artifacts (σe
2). If

artifact adjustments account for at least 75% of the variance in observed correlations Hunter

and Schmidt (1990) direct the analyst to assume that the between-studies variance is zero (i.e.,

σρ
2= 0). Here, one uses the fixed-effects approach and assumes that r  is a reasonable

estimate of the true population correlation, ρ. When between-studies variance is substantial, the

fixed-effects model advises the analyst to divide the studies into homogeneous groups and to

proceed with a separate meta-analysis on each these homogeneous groups. Within each group,

sources of true between studies variance are not allowed to influence the parameter estimates,

and r  is always the sole estimate of the population correlation. Note that no procedure for

modeling how between-studies differences influence observed and population correlations is

available. As a result, this method reduces to several fixed-effects models and cannot inform us

about potential influences of between-study variance or within-study results.

The random-effects approach, on the other hand, expressly models both

between-studies and within-studies (i.e., error) variance, and correctly allows them to influence

parameter estimates. If between-studies variance is truly zero, parameter estimates of the fixed-

and random-effects models will be the same. In the case of correlations, both estimate a single

ρ. However, if between-studies variance is not equal to zero, this variance will be taken into

account by the random-effects method when estimating the true mean correlation, ρ. The

fixed-effects model simply assumes it is zero. The estimate of true population correlation

remains meaningful in the random-effects case even in the presence of substantial

between-studies variance and, as a result, the division of studies into homogeneous groups

becomes unnecessary. If one wished for a more detailed assessment of ρ, it would be possible

                                                       
1 We note that it seems technically illogical to talk about variances of non-random quantities, i.e.,

σρ
2, unless one is dealing with a random-effects model.
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to model ρi in Equation 3 as a function of some observed covariates Wq = (Wq1,...,Wqj), so that

now ρi = Wq'ββ+ui. In this case attention shifts from an overall or ‘grand' mean correlation to ββ =

(β1,...,βϕ), the components of the overall mean correlation. Thus, meta-analytic research may be

improved by using random-effects which account for and explain between-studies variance.

Methodological Limitations of the Fixed-Effects Model

Reliance on fixed-effects model in meta-analytic research in applied psychology has

started a shift away from the situational specificity hypothesis which asserts that differences

between studies influence effect sizes. Although one would expect to find between-studies

variance in almost every meta-analysis conducted, the majority of meta-analytic studies in the

field of applied psychology have found the opposite. However, these studies have relied on the

fixed-effects model so findings of no between-studies variance might be overstated. If situational

contingencies such as contextual factors, individual differences, and treatment implementations

do cause real differences in correlations, use of the fixed-effects model is open to serious

challenge. We present statistical evidence of the potential consequences of a failure to include

estimates of between-studies variance below.

Statistical Properties of the Fixed- and Random-effects Models.

Johnson, Mullen, and Salas (1995) analyze the efficacy of three methods of meta-

analysis; the Hedges & Olkin (1985); Rosenthal & Rubin (1978, 1988; Rosenthal, 1991) and

Hunter, et al. (1982) fixed-effects models. Across a series of simulations, Johnson, et al. (1995)

found that the results of the Hedges & Olkin (1985) and Rosenthal & Rubin (1978, 1988;

Rosenthal, 1991) models converged together and conformed to conventional statistical

expectations. On the other hand, they found that the Hunter, et al. (1982) approach consistently

produced results which violated conventional statistical expectations and diverged significantly

from those of the other two models. We specify the reasons behind some of Johnson, et al.'s

(1995) findings and then extend the Rosenthal and Rubin (1978, 1988; Rosenthal, 1991) model

to include random-effects.
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The population equation for variance due to sampling error is:
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where k = the number of studies (Hunter & Schmidt, 1990:107). Hunter & Schmidt (1990:107)

state that since "... the average (ρ2) - (average ρ)2," Equation 7 can be estimated by:

∑
−

=
i

e N

kr 22
2 )1(

σ [7]

However, it is well known (e.g., Hardy, Littlewood & Polya, 1934) that, unless Var(ρ)=0,

the average (ρ2) > (average ρ)2, that is E(ρ2) > (E(ρ))2 , where E(.) denotes expectation (Hunter

& Schmidt, 1990:169). The average (ρ2) is equal to (average ρ)2 only when Var(ρ) is zero. This

can be seen by considering the formula for the variance of a random variable X:

Var(X) = E(X2) - [E(X)]2. [8]

Since variances are always positive, the only time that E(X2) - [E(X)]2 is when Var(X)=0. If we

substitute ρ for X in Equation 8, we see that Equation 7 is an appropriate estimate of sampling

error only when the true between-studies variance is zero. The result is that the fixed-effects

model attributes all variance to sampling error because it lumps variance from both between-

and within-studies sources together.

We illustrate the effects of lumping variances together by the example presented in

Table 1 where the true population values, ρ, are known. The cases differ in terms of the amount

of total variance in observed study correlations that is accounted for by true between-studies

sources (τ2) and within-studies or sampling error (σe
2) sources. For each case we have

computed the average (ρ2), the (average ρ)2, τ2, and the fixed-effects model estimates of

σρ
2,  σr

2, and σe
2.
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TABLE 1
Components of variance in study correlations

and fixed-effects method estimates

                                                                                                                                                                                                                        
% of variance Study Study Study Study True True
from between- #1 #2 #3 #4 σe

2 τ2 E(ρ2) (E(ρ)2 σρ
2 σr

2 σe
2

Case studies sources (n=100) (n=100) (n=50) (n=50)
                                                                                                                                                                                                                        
Case 1 100% ρ = .34 .16 .12 .38 0 .01103 .0735 .0625 -.000214 .011033 .011877

ri = .34 .16 .12 .38

Case 2 50 ρ = .32 .18 .17 .33 .005633 .0054 .0679 .0625 -.000214 .011033 .011877
ri = .34 .16 .12 .38

Case 3 25 ρ = .30 .20 .19 .31 .00816 .00287 .0654 .0625 -.000214 .011033 .011877
ri = .34 .12 .12 .38

Case 4 0 ρ = .25 .25 .25 .25 .011033 0 .0625 .0624 -.000214 .011033 .011877
ri = .34 .16 .16 .34
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In Case 1, all of the variance in observed correlations is due to between-studies factors

(τ2= .01) sampling error is zero. We see that the E(ρ2) is larger than the (E(ρ))2. It is clearly

inappropriate to use the fixed-effects model here because it produces the opposite result; that

between-studies variance (σρ
2) is zero2 and sampling error accounts for the total variance in

observed correlations.  In fact the fixed-effects estimate of sampling error (σe
2 = .012) is greater

than the total variance (σe
2 = .011).   In Case 4, all of the variance in observed correlations is

due to sampling error. The fixed-effects model is appropriate here because the E(ρ2) equals the

(E(ρ))2. However, even when sampling error accounts for 75% of total variance (Case 3), the

fixed-effects model produces erroneous results because the E(ρ2) is not equal to (E(ρ))2.

Although we can clearly see that the true between- and within-studies variance changes from

case to case, all estimates produced by the fixed-effects method stay the same. Application of

the fixed-effects model often results in an estimate of σe
2 (i.e., τ2) that is close to zero regardless

of its true size.  As was the result here, negative estimates are even possible (Hunter &

Schmidt, 1990). Thus, instead of estimating σρ
2 = σr

2 - σe
2, the fixed-effects model is actually

estimating σρ
2 = σr

2 - (τ2 + σe
2).  Because it assumes no true between-studies variance exists

and because it does not expressly estimate between-studies variance, the result is not

surprising: the variance remaining after removing "sampling error" is close to (or even less than)

zero3. In an actual meta-analysis the homogeneity assumption of the fixed-effects model is

highly questionable because values of ρ and τ2 are not a priori known.

Upon closer inspection, we see that Equation 7 is not an estimate of σe
2, sampling error,

it is k times the maximum likelihood estimate4 of σr
2, the variance of r . Since it is a maximum

likelihood estimate, it is a consistent estimate of k times σr
2. The values obtained from Equation

8 and the artifact correction method’s estimate of σr
2 converge to the same value as the number

of studies gets larger5.  Application of the fixed-effects model results in the subtraction of one

estimate of the variance of r  from another estimate of the variance of r . This explains both the

                                                       
2 In this case, the fixed-effects estimate of between-studies variance, of σρ

2, is negative. We
discuss the occurrence of negative variance estimates in the fixed-effects procedure in more detail below.

3 Koslowsky and Sagie (1994) show via simulation that the fixed-effects estimate of sampling
error usually accounts for between 80% and 100% of correctable artifact.

4  
∑

∑ −
=

i

ii
r N

rrN 2
2 )(

σ̂

5 Upon application of the weak law of large numbers it is k times the method of moments
estimator of the variance of r ; Bickel & Doksum, 1977.
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propensity for the fixed-effects model to produce near zero estimates of σρ
2 and the occurrence

of negative estimates. Because of these limitations in the fixed-effects model, we present a

random-effects model which produces estimates of both within- and between-studies variance

in the sections below. Furthermore, it allows those variance components to correctly influence

estimates of the population correlation.

A Random-Effects Estimator of ρρ

The following discussion is a procedural overview of the random-effects model. We

provide the details and statistical derivation of a general random-effects model and a random-

effects-with-covariates model in the appendix. Application of the proposed general random-

effects model is very straightforward and results can even be calculated by hand. The iterative

procedure for the model with covariates is easily adapted to many mathematical computer

programs. The proposed random-effects procedures are further facilitated because corrections

for sampling error and range restriction artifacts may be unnecessary. Such corrections are

inherent in the procedure (Bryk & Raudenbush, 1992; Raudenbush, 1988).

A General Random-Effects Model

Combing Equations 1 and 2, the general random-effects model is:

ri = ρ + ui + eI . [9]

The general model entails estimating three parameters: ρ, ui, and ei.  The variance of the ui's is

τ2 (from Equation 3). By expressly estimating between-studies variance, the random-effects

model provides a rigorous method to statistically test the homogeneity assumption (i.e., the

standard Cochran -χ2 test of Ho: τ2 = 0; Cochran, 1937). Study characteristics which do produce

real variation in population values are incorporated in the between-studies variance term, τ2. In

the random-effects model ρ̂  is analogous to the grand mean in an ANOVA analysis. It

represents the gross or overall population value after partialling out differences due to study

characteristics. If a subset of study characteristics are important, differences in population

correlations due to theoretically meaningful factors can also be estimated. This can be

accomplished through a random-effects-with-covariates model which we present below.

The general random-effects method proceeds as follows. First, because they come from

a skewed distribution, raw correlations are transformed to follow a normal distribution.

Transforming the correlations normalizes their distribution and stabilizes their variance allowing

us to use maximum likelihood estimation. Maximum likelihood estimators reach the Cramer-Rao

lower bound and are therefore efficient and consistent (Bickel & Doksum, 1977). This
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transformation is very straightforward. First, transform the individual correlations, ri's, into ri*'s

using Hotelling's (1953) transformation:

)]1(
)3(2

1
[ 2
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N
rr i

i
ii −

−
−= . [10]

Second, transform the ri*'s using Fisher's z-transformation which constructs the zi*'s. By

transforming the raw correlations into zi*'s they now follow a normal distribution with a known

stable variance (Bobko, 1995; Fisher, 1946). The within-studies variance of the zi*'s is 1/ni. The

procedure continues by computing estimates of the population correlations and between-studies

variance. The starting assumption is that between-studies variance or τ2 is zero. Using this

value, Equation 11 is solved.
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The obtained value for w; is used in Equation 12.
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Next, ξ̂  the from Equation 12 is used to solve Equation 13 for a new 2τ̂ .
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Continue exchanging 2τ̂ and ξ̂  in Equations 12 and 13 until the difference in obtained

estimates is very small (e.g., 10-10). In various simulations we conducted, convergence was

usually achieved in less than seven iterations. Finally, back-transform ξ̂  into ρ̂  using Equation

14.
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This. model without covariates can be computed by hand or using a short computer

program6.  Confidence intervals of the estimated population correlation can be computed using

Equation 15.
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This general model provides an estimate of the true population correlation, ξ̂ , and an

overall estimate of the between-studies variance, 2τ̂ . It also takes between-studies variance

into account when estimating the population correlation. Researchers should use this simple

model when they assume no important moderators exist. A model with covariates, which allows

the researcher to test for causes of between-studies variance (moderators), operates much like

a standard regression with indicator or dummy variables. The effects of theoretically important

factors on study correlations can be tested using a standard t-test. The model to be estimated is

then:

ξi
 = xi

Tβ + δi δi ~ N(0, τ2)

Because of the complex iterative calculations, the model with covariates requires a computer

program. As an example, the participation literature suggests that the form of employee

participation might influence its effects on job performance and satisfaction (Cotton, Vollrath,

Lengnick-Hall, & Froggatt, 1990; Leana, Locke, & Schweiger, 1990; Wagner, 1994). The

covariates of interest here are different forms of participation and they can easily be included in

a random-effects model. We present such an analysis later in the paper.

A number of statistical and practical advantages are offered by these random-effects

estimators. First, because between-studies variation in effect sizes is accounted for by the

model and is correctly allowed to influence parameter estimates, random-effects models are not

constrained by the restrictive assumptions of the fixed-effects method. The general model also

includes an estimate of the variance due to between-studies characteristics (i.e., τ2). Operating

like the residual in a standard ANOVA or ordinary least squares regression (OLS), τ2 captures

the effect of study characteristics not expressly included in the analysis. The model with

covariates can be expanded to include a number of factors which represent theoretically

meaningful study differences (similar to the moderators proposed by Hunter & Schmidt, 1990),

allowing theory testing about the importance of these differences. Another advantage of the

random-effects procedure is that confidence intervals, which offer a superior approach to

                                                       
6 A program written in S-Plus for Windows is available from the authors upon request. It can be

easily altered for other mathematical programs.
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hypothesis testing (Bakan, 1966; Cohen, 1994; Lykken, 1968, Rozeboom, 1962), can be

computed for the parameter estimates. These procedures also preclude adjusting for sampling

error because such adjustments are inherent to the estimation procedure. Finally, the estimator

of t can be easily re-expressed in p units through reverse transformation. This allows the

researcher to discuss the results of the meta-analysis in correlational terms.

Comparing Parameter Estimates from the Fixed and Random Effects Models

Although it is always advisable to use proper methods of estimation, statistical

differences in the accuracy and correctness of methods do not always lead to practical

differences in estimations. We also recognize that when τ2 is likely to be different from zero,

careful researchers would not use the fixed-effects approach. We conducted the following

simulation study to demonstrate the practical consequences of misapplication of the

fixed-effects method when between-studies differences are significant. In this simulation, the

true population correlation, between-studies variance, and within-studies variance were set in

advance. This allowed us to compare the accuracy of random- and fixed-effects estimation as

values of τ2 change.

Method

Data sets were created by assigning the number of studies (k), the true population

correlation (ρ), and the between-studies variance (τ2) for each data set. Then, a random

numbers generator was used to create each of the k studies comprising a data set. The sample

size of each study (Ni) was allowed to vary uniformly from 40 to 80. For each study in the data

set, the computer produced an observed correlation and a sample size. Next, based on the data

set of k studies created, we estimated the population correlation ( ρ̂ ), the between-studies

variance ( 2τ̂ ), and the standard error of the point estimates (SE( r ) and SE( ρ̂ )) using the

fixed-effects (Hunter & Schmidt, 1990) and random-effects procedures. In addition, for each

point estimate obtained by the two methods, we constructed a confidence interval.

Results

Table 2 presents the results of the simulation. With respect to the population correlation

estimates, although neither method produced exactly precise results, the random-effects model

produced better estimates of the true population correlations in all cases. Moreover, as the

between-studies variance increased, the random-effects parameter estimates remained stable

while those of the fixed-effects model became less and less accurate. This results are depicted

in Figures 1 & 2. The fines are kernel smoothed (Hardle, 1990) summaries of all the estimates,

while the points denoted by "X" and "+" are the point estimates.
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TABLE 2
Comparison of parameter estimates from the

random-effects and fixed-effects methods
                                                                                                                                                                                                            

                                                                                   Fixed-effects Method                          Random-effects Method                          
True Standard Standard

True between- Average error of error of
population studies study the point the point
correlation variance Number correlation estimate estimate

Case (ρ) (τ2) of studies ( r ) (SE( r )) ρ̂ 2τ̂ (SE( ρ̂ ))
                                                                                                                                                                                                         

Case 1 .2 .1 75 .16 .002 .16 .08 .04
Case 2 .2 .6 75 .15 .002 .17 .50 .08
Case 3 .2 .1 100 .18 .001 .20 .09 .03
Case 4 .2 .6 100 .11 .001 .17 .61 .08
Case 5 .4 .1 75 .35 .001 .40 .10 .04
Case 6 .4 .6 75 .24 .002 .32 .63 .09
Case 7 .6 .1 75 .56 .001 .60 .09 .03
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Figure 1.  Point estimates of ρ̂  and r  (ρ = .2)
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Figure 2.  Point estimates of ρ̂  and r  (ρ = .8)
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In all cases presented in Table 2, the estimates of between-studies variance produced

by the random-effects model are very close to the true values of τ2. Moreover, the confidence

intervals estimated by the fixed-effects model are much too narrow. This is no doubt due to the

fact that the between-studies variance is not accounted for. In fact, much can be learned about

differences between the accuracy of the methods by focusing on the confidence intervals.

Figures 3, 4, and 5 plot the kernel smoothed point estimates and both upper and lower

confidence limits. This smoothing again makes it easier to see the difference in the procedures.

First, as Figures 3, 4, and 5 show, the fixed-effects model neglects to estimate between-studies

variance and, hence, the confidence intervals are very narrow. Even as τ2 increases, the

confidence intervals of the fixed-effects model remain constant. On the other hand, the

random-effects confidence intervals appropriately become wider as τ2 increases; as true

between-studies differences increase, the confidence intervals become wider to account for

these differences. Finally, comparing Figures 3, 4, and 5 reveals that, as the true correlation

coefficient increases from .2 to .8, the confidence intervals of the fixed-effects model become

even narrower and fail to include the true population parameter, ρ. Thus, as correlations

become stronger, confidence intervals of the fixed-effects model become narrower and the point

estimates become worse (as Figures 1 & 2 also demonstrate). Indeed, Figures 3, 4, and 5

indicate that the confidence intervals of the fixed effects model degrade as p increases. On the

other hand, the random-effects confidence intervals only worsen slightly as the value of the true

correlations increase. In sum, the results of this simulation indicate that the random-effects

model produces more precise estimates of the population correlation and much more accurate

confidence intervals. The results of this simulation confirm the findings of Johnson, et al. (1995).
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Figure 3.  Confidence intervals for estimates of ρ̂  and r  (ρ = .2)
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Figure 4.  Confidence intervals for estimates of ρ̂  and r  (ρ = .5)
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Figure 5.  Confidence intervals for estimates of ρ̂  and r  (ρ = .8)
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The random-effects model can be extended to include covariates that account for

between-studies variation. We simulated meta-analytic data sets where τ2 was caused by

industry differences in the sample of organizations from which data for the studies were drawn.

For convenience, we assumed the organizations came from two different industries with

different population correlations. We used a k of 60, allowing the sample size to vary uniformly

between 40 and 80. We estimated the pooled or general random-effects model in addition to the

model with second-level covariates for the sub-groups. Table 3 presents the data and summary

results. It is clear the grand mean or overall population parameter estimate, ρ, is in between the

values for the two sub-populations. The importance of including meaningful covariates can be

seen in terms of the estimates of ρ and τ2. When a second-level covariate denoting industry was

included, estimates of these sub-population parameters were obtained which are very close to

the true sub-population values. This second-level model can be extended to include multiple

covariates and to model more complex relationships. Furthermore, this model avoids the

problems of conducting two, separate meta-analysis as would be prescribed by the fixed-effects

model.
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TABLE 3
Results of including second-level covariates

in a random-effects model
                                                                                                                                                                                                                   

True True Pooled or
population population `grand
correlation correlation mean' pooled
for industry for industry True ρ̂  for ρ̂  for estimate of estimate of

Simulation #1 #2 τ2 industry #1 industry #2 2τ̂ ρ̂ 2τ̂
                                                                                                                                                                                                                     

Simulation #1 .3 .7 0 .31 .70 .0001 .57 .07

Simulation #2 .3 .7 .l .31 .71 .07 .58 .14

Simulation #3 .3 .7 .2 .27 .71 .20 .57 .29

Simulation #4 .3 .7 .3 .26 .69 .33 .55 .36

Simulation #5 .3 .7 .4 .32 .70 .40 .57 .48
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To further illustrate the random-effects-with-covariates model we analyzed the meta-

analytic data on participation presented in Wagner (1994). Wagner (1994) was addressing the

debate about whether the form of participation was important for explaining its effects. Cotton, et

al, (1990) argued that different forms of participation would have different effects on employee

performance and job satisfaction. Leana, et al., (1990) argued the form did not matter;

participation's effects on performance and satisfaction were negligible. Wagner (1994) reviewed

data from existing studies again. We only used data on the participation-job performance

relationship. Wagner (1994) used the fixed-effects model of Hunter and Schmidt (1990) to

compute the population correlation between participation and job performance for six different

forms of employee participation. He broke the sample into six sub-samples - one for each form

of participation -and found low correlations across these sub-groups. Wagner (1994) concluded

that the form of participation did not matter. However, he notes several limitations of the fixed-

effects procedure including lack of a precise test of differences among subgroups means and

the relatively small sample size caused by the need to conduct six subgroup meta-analyses.

The random-effects-with-covariates model avoids both of these limitations. Separate

meta-analyses are not necessary because the form of participation can be included as a series

of indicators variables. The coefficients obtained for these covariates allow the use of the usual

t-test that the parameter estimate is zero to determine if statistically significant differences

between forms of participation exist. The results of the random-effects with covariates analysis

are presented in Table 4.
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TABLE 4
Analysis of participation data from Wagner (1995)

using a random-effects model

Factor      ξ̂ s.e.     t-test
                                                                                                                     

Intercept or grand mean correlation 0̂ξ  = .12 .08 1.40

Participation in work decisions 1̂ξ  = .16 .08 1.89

Consultative participation 2ξ̂  = .002 .11 .02

Informal Participation 3̂ξ = .20 .09 2.26*

Employee Ownership 4ξ̂   = .08 .13 .61

Representative participation 5̂ξ   = .11 .10 1.31

                                                                                                                        

Note: *p < .05 (two-tailed test)

Similar to an ordinary regression, we omitted one of the six indicator variables to avoid

colinearity. The omitted form of participation is what Wagner (1994) calls short-term

participation. Only one indicator coefficient was significant, the coefficient for informal

participation ( ξ̂ 3= .20, p<.05) suggests a difference between short-term and informal

participation. After back-translation, the estimated correlation for informal participation and

performance is .35, for short-term participation and performance it is .14. Analyses of this sort

could be conducted in many other meta-analytic situations. Although we present this analysis

for illustrative purposes only, it leads us to conclusions different from those of Wagner (1994);

the form of participation may matter if one is comparing short-term and informal participation.

Discussion

Perhaps the most valuable contribution of the random-effects model is the discipline it

imposes on the process of meta-analysis. Rather than assuming away potentially important

differences between studies, the random-effects model provides a more rigorous means of
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modeling and then testing for their existence and impact on a series of studies. The

meta-analyst specifies a theoretically-based model of the relationships under study and then

uses statistical analyses to test that model. This is the common approach used by psychologists

in regression analyses. The fixed-effects approach, on the other hand, assumes a single model

fits all meta-analytic situations.

One of the fundamental differences between random- and fixed-effects approaches is

their divergent perspective on the situational specificity hypothesis. This hypothesis contends

that there may be real differences between studies that cause coefficients to vary. Whereas the

random-effects model explicitly tests the validity of this hypothesis, the fixed-effects model just

assumes it away. This is similar to the choice of covariate modeling versus Y  to explain a

regression situation. The fixed-effects model asserts that r  is the best estimator and attempts

to explain away the sampling error. The random-effects approach assumes that, at a minimum,

r is not the best estimator because unexplained causes of variance in the ri's exist. The

situational specificity hypothesis is sometimes misinterpreted as implying that, since parameter

estimates vary from setting to setting, results cannot be generalized from study to study. The

fixed-effects meta-analytic framework of Hunter and Schmidt (1990) is directed against this

view. These authors claim that, in most cases, study results can be combined in order to

achieve a single meaningful parameter. We fully agree with this conclusion. However, the

fixed-effects model goes a step beyond by presuming that differences between studies usually

do not exist or are not meaningful. As we have demonstrated, this conclusion can lead to

erroneous results when taken as an a priori assumption. Surprisingly, when between-studies

differences do exist, the fixed-effects model appears to accept the hypothesis that an overall

parameter is unobtainable due to the heterogeneity of study groups. It suggests that studies be

divided into more homogeneous subgroups and a separate meta-analysis conducted on each

sub-group. Consequently, parameter estimates cannot be generalized across these sub-groups.

The random-effects model asserts the opposite. Rather than breaking studies into separate

meta-analyses, real differences between studies are accounted for in the model and the

estimate of an overall parameter is meaningful. This approach is analogous to including an

indicator variable in an OLS regression to account for group membership (e.g., male-female)

rather than computing a separate regression for each group. Furthermore, these sub-group

differences can be explicitly modeled through second-level covariates.

Many of these advantages derive from the generalizability of random-effects results to a

super-population of all hypothetical studies on a relationship of interest (fixed-effects results can

only be generalized to the studies included in the meta-analysis; Bryk & Raudenbush, 1992;
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Hedges & Olkin, 1987; National Research Council, 1992). By providing a theoretically and

statistically strong base, the general random-effects model introduced here can be extended

into a family of hierarchical linear models capable of incorporating a variety of research

problems. The random-effects-with-covariates model is one such extension. Others include

modeling effects at three levels, say individual employee, firm, and industry. For example, a

meta-analysis in organizational research might nest studies within industries and then nest

industries within geographic regions. Such an analysis could be conducted using a hierarchical

random-effects model (Bryk & Raudenbush, 1992). These models also extend our ability to

draw out information which is important for understanding the nature and function of

psychological constructs. These models can effectively combine information from seemingly

dissimilar studies to provide answers to sophisticated research questions. For example,

DuMouchel and Harris (1983) used cancer data from different studies on a variety of

mammalian species and carcinogenic agents to gain a better understanding of the carcinogenic

effects of a particular diesel fuel on humans even though no human data were available. This

explanatory power ‘borrows strength' by drawing out important information from a group of

studies which cannot be obtained from the individual studies nor from a fixed-effects approach.

Applied psychologists can gain considerable advantages in investigating complex relationships

using the approaches outlined here. Random-effects models can also be easily extended to

include a wide variety of study parameters in addition to correlations. Bryk and Raudenbush

(1992) give an overview of the general models and the required transformations for continuous,

dichotomous, and logistic effect sizes, among others.

Random-effects procedures shed light on meaningful sub-populations or sub-groups in

the data that have different population correlations. By separating variability into within- and

between-groups components, random-effects models draw attention to factors accounting for

differences between sub-populations. The factors contributing to between-studies variance can

be identified and modeled by random-effects procedures so that analysts can then test

hypothesis about cross-level effects. In addition to improving parameter estimates, including

second-level factors to link parameters from different levels efficiently utilizes information from

groups to detect hierarchical structures (i.e., sub-populations) in the data. These procedures for

diagnosing and testing sub-group effects provide potentially powerful exploratory techniques

useful in many theory-testing situations.
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Conclusion

The random-effects approach we have outlined here is a general form of a family of

models based upon hierarchical linear modeling theory. It is extremely flexible, allowing a

number of theoretical specifications to be incorporated and tested. These extensions include

diagnosing sub-population effects and hypothesis testing of theoretically meaningful covariates.

A variety of effect sizes, in addition to correlations, can be used including continuous and

dichotomous variables (Bryk & Raudenbush, 1992). Owing to the theoretical and

methodological problems associated with the fixed-effects model which were discussed

throughout this paper, we believe that future meta-analyses should be conducted using the

random-effects model. In particular, the a priori assumption that between-studies differences are

zero or unimportant is tenuous. We recommend that potential differences should be explicitly

modeled and tested. If the potential for theoretically relevant between-study differences exists in

past meta-analysis, researchers may wish to apply the random-effects model to check their

results for the effects of the homogeneity assumption.

Despite the methodological problems outlined herein, the message brought to the field of

applied psychology by Hunter and Schmidt (1990) is invaluable - results from different studies

can be combined and a generalizable coefficient can be obtained. Advances in meta-analytic

modeling now allow meta-analysts to go beyond the estimation of the basic ‘grand mean'

population effect by developing and testing richer, more complex models. Such models offer the

promise of contributing extensively to our understanding of psychological constructs and

relationships.
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APPENDIX

Because we refer to equations contained in the body of the paper, we continue

numbering appendix equations consecutively with the body. Rather than working in the natural

parameterization of Equations 1 and 2, we prefer to apply Fisher's z-transformation to both the

sample and population correlations (Fisher, 1932). Such a transformation is known as a

variance stabilizing transformation and the use of such transformations is common place in

statistical practice (Bickel & Doksum, 1977:221). It is well known that the sample correlation is

1) a biased estimate of the true correlation, 2) has a variance which depends on the true

correlation, and 3) has a skewed distribution for large IρI (see Figure 3.3 in Bobko, 1995:51).

Therefore, a model such as Equation 1 may not be realistic. Bobko (1995:51) notes that,

because of the skewness in the sampling distribution of the sample correlations, averaging

untransformed correlations can lead to an under-estimation of the true average. (See Silver and

Dunlop, 1987 and Strube, 1988 for computer simulations of this observation.) Specifically, if r is

a correlation based on a sample of N = n + 1 and p is the true correlation:
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The symbol O(n-α) denotes an error of approximation e(ρ) term such that e(ρ)nα is bounded by

some constant as n tends toward infinity, for instance 1/n2= O(n-2) That is, O(n-2) gives a rate at

which e(ρ) tends to zero; as n increases the value of O(n-2) decreases to zero rapidly. Upon

applying the z-transformation
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where atanh(.) is the arc-hyperbolic tangent function. It follows that
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Therefore, the variance has been stabilized. A further transformation will reduce the bias

remaining in the z-transformed sample correlations. Define )]1(
2

1
[* 2rr

n
rz −−= .  In this case,

it can be shown that

)(*)( 2−+= nOzE ξ

)(
1

*)( 2−+= nO
n

zVar .

For more details on these transformation see Hotelling, 1953). Furthermore, the probability

density function of z* looks nearly normal, particularly for N > 25. Devlin, Gnanadesikan, and

Kettenring (1976) and Bobko (1995) make the recommendation that one can treat the

transformed correlations as if they were normally distributed with a mean equal to zero and

variance equal to 1/(N - 3). See Fisher (1932:201) and David (1938) for more details on the

approximate normality.

Upon taking these transformed results into account, it is quite clear why Equation 4 may

be an inadequate model. We prefer to model the relationships in the transformed scale. If ri, ρi

(i=1,...,k), and ρ denote the sample, individual population, and overall population correlations,

respectively, define
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n
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for 1 < i < k. Then we propose the model:
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1
)     i = 1,…,k [16]

ξI = ξ + δi         δi ~ N(0,τ2)  i = 1,…,k [17]

where ni.=Ni- 3. This is a general model because potential differences between studies are

accounted for via a general random effect, δ1. Under the model defined in Equations 16 and 17,

it k follows that the marginal distributions of the   are independent normals with a mean equal to

ξ and a variance equal to .  Therefore, the likelihood function for (ξ, τ2) is then equal to
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It follows from this likelihood function that the maximum likelihood estimators ( ξ̂ , 2τ̂ ) of (ξ, τ2)

are solutions to the equations
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where  
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w .  It is easy to solve these equations via iterations. Start at a value, say

τ2 = 0, solve Equation 19, then Equation 20. Given a new value of 2τ̂ , solve Equation 18 again,

then compute a new 2τ̂ .  Continue this process until there is only a slight difference between

successive estimates (say, 10-10). In various simulations we conducted, convergence was

usually achieved in less than seven iterations.

Using the usual large sample properties of maximum likelihood estimators and Fisher

information arguments it can be shown that the estimate of ξ̂  is approximately normal, at ξ with

a variance equal to 
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approximate pivot as to yield the 95% confidence interval for ξ:

1

1

2ˆ
1

96.1ˆ
−

=
∑ 








+−

k

i in
τξ <  ξ  <  

1

1

2ˆ
1

96.1ˆ
−

=
∑ 








++

k

i in
τξ . [21]

One usually wishes to recover the true mean population correlation rather than the

transformed version. In this case define:

)ˆexp()ˆexp(
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as the back-transformed point estimate of ρ. This is also the maximum likelihood estimator of ρ

due to the invariance of the maximum likelihood estimation technique (see Bickel & Doksum,
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1977:141). As tanh(.) is a monotone function one may apply it to all three parts of Equation 21

and still maintain the inequality in addition to the implied confidence statement. Consequently,

the 95% confidence interval for ρ is
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A Random-Effects with Covariates Model

Now, consider the model

ξi = xi
T ββ + δi δi ~ N(o,τ2)

where xi
T is a vector of covariates for the ith individual under study. Again, the estimation is

based on the marginal density of the zi*'s, which, since the zi* have independent normal

distributions with mean and variance equal to xi
Tββ and 
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τ
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, respectively, is given by
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Following the previous approach, we can estimate β and 2τ̂  by differentiating Equation 16 with

respect to β and 2τ̂ , and setting the equations equal to zero. Letting β̂  and 2τ̂  denote the

likelihood estimates, the estimates obtained can be expressed as

( ) ( )*ˆ 111 zWXXWX TT −−−=β [24]

where z* = (zI*, ..., zk*)
T, X is the k x l matrix with rows xi

T, and W is the k x k diagonal matrix

with diagonal element 
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As before, there are no single closed form expressions for β and τ2. However, one can use the

iterative scheme previously discussed.
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