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Abstract
Absenteeism research has often been criticized for using inappropriate analysis. Characteristics of absence
data, notably that it is usually truncated and skewed, violate assumptions of OLS regression; however, OLS
and correlation analysis remain the dominant models of absenteeism research. This piece compares eight
models that may be appropriate for analyzing absence data. Specifically, this piece discusses and uses OLS
regression, OLS regression with a transformed dependent variable, the Tobit model, Poisson regression,
Overdispersed Poisson regression, the Negative Binomial model, Ordinal Logistic regression, and the Ordinal
Probit model. A simulation methodology is employed to determine the extent to which each model is likely to
produce false positives. Simulations vary with respect to the shape of the dependent variable's distribution,
sample size, and the shape of the independent variables' distributions. Actual data,based on a sample of 195
manufacturing employees, is used to illustrate how these models might be used to analyze a real data set.
Results from the simulation suggest that, despite methodological expectations, OLS regression does not
produce significantly more false positives than expected at various alpha levels. However, the Tobit and
Poisson models are often shown to yield too many false positives. A number of other models yield less than
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Abstract

Absenteeism research has often been criticized for using inappropriate analysis.

Characteristics of absence data, notably that it is usually truncated and skewed, violate

assumptions of OLS regression; however, OLS and correlation analysis remain the dominant

models of absenteeism research.

This piece compares eight models that may be appropriate for analyzing absence data.

Specifically, this piece discusses and uses OLS regression, OLS regression with a transformed

dependent variable, the Tobit model, Poisson regression, Overdispersed Poisson regression,

the Negative Binomial model, Ordinal Logistic regression, and the Ordinal Probit model. A

simulation methodology is employed to determine the extent to which each model is likely to

produce false positives. Simulations vary with respect to the shape of the dependent variable's

distribution, sample size, and the shape of the independent variables' distributions. Actual data,

based on a sample of 195 manufacturing employees, is used to illustrate how these models

might be used to analyze a real data set.

Results from the simulation suggest that, despite methodological expectations, OLS

regression does not produce significantly more false positives than expected at various alpha

levels. However, the Tobit and Poisson models are often shown to yield too many false

positives. A number of other models yield less than the expected number of false positives, thus

suggesting that they may serve well as conservative hypothesis tests.
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A fundamental problem with scientific research is that the way we try to solve a problem

affects what kind of results we see (Kuhn, 1970). This is partly reflected in the social sciences

as the statistical method used to analyze data affects what kind of relationships we observe.

When the assumptions of the employed statistical model are met, the observed coefficients are

usually reliable and efficient (Greene, 1993), or in other words, they describe the actual

relationship well. However, when these assumptions are violated, such as when using Ordinary

Least Squares (OLS) regression to analyze non-normal data, resulting estimates may not be

meaningful. This can result in true relationships not being discovered (i.e., Type II errors), or the

mis-identification of non-existent relationships (i.e., Type I errors).

An area of human resource research that has been plagued by methodological concerns

is research on absenteeism. The largest problem stems from the fact that rates of absenteeism

do not follow a normal distribution (Arbous & Sichel, 1954; Baba, 1990; Hammer & Landau,

1981; Harrison & Hulin, 1989; Landy, Vasey, & Smith, 1984; Martocchio & Harrison, 1993;

Mikalachki & Gandz, 1982; Rushmore & Youngblood, 1979; Watson, Driver, & Watson, 1985).

This results in a skewed, truncated distribution, which contradicts the assumptions of commonly

employed statistical methods, such as correlation analyses and OLS regression (Nunnally,

1978). Yet, despite fundamental methodological flaws, correlation and multiple regression

dominate absence research (Baba, 1990; Martocchio & Harrison, 1993).

The methodological issues raised by the distributional characteristics of absenteeism

data are quite significant. Indeed, one might even argue that prior statistical findings using

correlations or OLS regression are questionable, perhaps suggesting that empirical

absenteeism research should begin anew. A more conservative approach would entail

evaluating the significance of these methodological problems.

Although statistical and methodological research provides alternatives to traditional

analysis, the field is still largely silent regarding the implications of more typical methodologies

to our understanding of absenteeism. This piece will address this point by comparing eight

different analysis methods: OLS regression, OLS regression with the absenteeism variable

transformed, the Tobit model, Poisson regression, Overdispersed Poisson regression, the

Negative Binomial model, Ordinal Logistic regression, and Ordinal Probit regression. The

models will be compared in two ways. First, a simulation will be employed to evaluate the

models' propensities for Type I errors. This simulation will demonstrate the extent that these

models are likely to detect statistically significant relationships when these relationships do not

really exist, and will explore the sensitivity of the models to characteristics of the dependent

variable's distribution, characteristics of the independent variables' distributions, and sample
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size. Second, using a basic data set (i.e., not a simulation), findings from the eight models will

be compared. The results will help illustrate how these models might be used and interpreted in

field research.

Methods of Coping with Absence-Like Data

Researchers are beginning to identify alternatives to help overcome the methodological

problems associated with absenteeism research, and more generally with analyzing count data.

These alternatives can be seen as either, one, changing the characteristics of the data to meet

the assumptions of traditional statistical methods better, or two, using a statistical method that is

more appropriate for the type of data collected.

One way to change the data involves changing the level of aggregation. Because there

is a low base rate of absenteeism on any given day, aggregation allows for a wider distribution

of values. This approach ostensibly produces distributions that better meet the assumptions of

traditional analyses. Additionally, if we assume that there are no differing effects on

absenteeism over time, then correlations at the individual level data should equal correlations of

the aggregated data (Ostroff, 1993).

However, aggregation may still leave problems and create other problems that make its

use undesirable (Hulin & Rousseau, 1980). For example, Harrison and Hulin (1989) show that

aggregation of voluntary absence data from one month to one year exaggerates the level of

skew and kurtosis, and the truncation problem is still obvious. In their example, aggregation only

reduced the effect of discreteness. Thus, researchers are still faced with the methodological

difficulties they started with. Additionally, aggregation may obscure relationships because of

longer cause effect time gaps and may occlude the effects of some environmental variables

(Harrison & Hulin, 1989). For example, if winter weather has a significant effect on an

individual's ability to attend work, aggregating over the entire year will obscure the effect that

winter storms have on level of absenteeism.

Another approach to studying absenteeism is to observe a related, but better behaved,

dependent variable. One approach entails studying the more broadly defined construct of

withdrawal behaviors, which may include absenteeism, lateness, intent to leave the

organization, turnover, etc. (Hulin, 1991). This approach may yield a continuously distributed

dependent variable that overcomes the problems associated with studying low base rate events

(Hulin & Rousseau, 1980). A similar approach, but used to study absenteeism alone, was

employed by Martocchio and judge (1994). In their piece, the authors asked subjects to read

scenarios that varied with respect to hypothesized absence-related factors (presence of

hobby/leisure activities, presence of community/ religious activities, if it was the beginning or
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end of the week, kinship responsibility, presence of pressing work, and personal illness).

Subjects were then asked to indicate, using a seven-point Likert-type scale, the extent to which

they would likely miss work if faced with those particular circumstances. The data collected was

well suited for traditional analyses (ANOVA, OLS Regression, cluster analysis); however, the

method can only be applied using an experimental methodology, and thus does not lend itself to

analysis where archival data (i.e., number of absences) are used.

An alternative to traditional analysis was demonstrated by Harrison and Hulin (1989),

who overcame methodological problems by using an event history model. Event history models

describe the states individuals are in, the time spent in those states, and the rates of

movements from state to state (Harrison & Hulin, 1989). Markov models and hazard-rate

models are two examples of popular event history models. Such models overcome many of the

estimation problems for absence-like data because "model estimation is built on an emerging

theory called quasilikelihood, which does not require that the data conform to a specified

multivariate distribution (Harrison & Hulin, 1989, pg. 315)"; however, such models entail

analyzing large samples over multiple observation periods, and thus may not be applicable for

samples more typical of absenteeism research (Harrison & Hulin, 1989).

Modeling Strategies

OLS Regression

When faced with non-normal data, we can always ignore the problem and proceed as if

the data were normally distributed. This practice, although not recommended for clear statistical

reasons (Johnson & Wichern, 1992), is by far the most common practice in absenteeism

research as illustrated by the preponderance of OLS regression (Baba, 1990; Harrison & Hulin,

1989; Martocchio & Harrison, 1993).

One implication of this is that, because OLS regression does not account for absences

being truncated at zero, it can predict negative values which are clearly meaningless.

Additionally, the validity of hypothesis tests in OLS regression depends on assumptions of the

variance scores that are unlikely to be met in typical count data (Gardner, Mulvey, & Shaw,

1995). As a result, sampling statistics (i.e., mean and variance) may differ significantly from the

true population parameters, which could lead to a loss of power, and thus Type II errors

(Hammer & Landau, 1981). A skewed distribution can also lead to heteroscedasticity, which can

severely effect standard errors, and lead to Type I or Type II errors (Hammer & Landau, 1981).

Because for count data, like number of absences, the residuals almost always correlate

positively with the predictors, the estimated standard errors of the regression coefficients are

smaller than their true value, and thus the t-values associated with the regression coefficients
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are inflated (Gardner et al., 1995). Thus, OLS regression seems prone to Type I errors for

analysis of absenteeism data.

While these assertions are methodologically sound and have face validity, the

significance of this problem has not received much empirical attention. There have been some

exceptions to this. OLS regression has been compared to the Tobit model (Hammer & Landau,

1981) and the Poisson and Negative Binomial models (Cameron & Trivedi, 1986; Hausman,

Hall, & Griliches, 1984). These comparisons will be discussed after the specific models have

been introduced.

Data Transformations and OLS Regression

An alternative to ignoring the non-normality problem is to transform the data to make it

"more normal looking." Transformations are nothing more than expressing the data in different

units (Johnson & Wichern, 1992), and thus data transformations are commonly recommended

to help satisfy statistical assumptions. For count data, such as number of absences, the square

root is a recommended transformation function (Johnson & Wichern, 1992).

Unfortunately, there are a number of potential problems with transforming data,

particularly for absenteeism. Most obviously, data transformations do nothing to compensate for

the fact that absenteeism data are truncated at zero, and thus negative absences can still be

predicted (Hammer & Landau, 1981; Harrison & Hulin, 1989). Additionally, Harrison and Hulin

(1989) assert that "even transformed measures of absenteeism data are often inadmissible as

dependent variables in linear regression, because linear regression assumes normality of the

marginal distributions of the dependent variable (pg. 300)." The modal value of the distribution

will still fall near the bottom of the scale, and although transformations may make the distribution

look more normal, heteroscedasticity is still likely to be a problem. This can lead to reduced

correlation coefficients, loss of power, and Type II errors (Hammer & Landau, 1981; Harrison &

Hulin, 1989), or inflated t-values and Type I errors (Gardner et al., 1995). However, OLS

regression after transforming skewed variables has not been compared to alternative

methodologies for absence data.

Tobit Model

Although alternatives to OLS are rare, one technique receiving some attention in

absenteeism research is the Tobit model (Baba, 1990; Hammer & Landau, 1981). The Tobit

model (Tobin, 1958) is a regression model designed to handle truncated data, where the

truncated value occurs with a high probability and the variable is continuously distributed

beyond that point (Baba, 1990; Greene, 1993). Tobit models are espoused to provide more
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consistent, reliable, and less biased estimates than the OLS model (Baba, 1990; Leigh, 1985;

Maddala,1983).

Some research has suggested that the Tobit model is more sensitive than OLS

regression (Baba, 1990; Hammer & Landau, 1981). While this assertion has received some

support in the form of more significant coefficients resulting from Tobit models than OLS models

(Baba, 1990), this does not necessarily prove the value of the Tobit model. If we assume that

the new significant values from the Tobit model are not Type I errors (or in other words, the lack

of significance from the OLS regression are Type II errors), this would imply that significant

findings from previous research relying on OLS regression are still valuable. Indeed, this seems

to be what researchers espousing the merits of the Tobit model are implying: they suggest that

the Tobit model be used as a check on an OLS solution (Baba, 1990; Hammer & Landau,

1981). Nonetheless, the need still exists for further comparisons of the Tobit model to OLS

regression (Baba, 1990). The Tobit model should also be compared to OLS with transformed

data. Additionally, because the Tobit model assumes a continuous dependent variable, and

because absences data are discrete, the Tobit model should be compared to count models.

Poisson Regression

For data where the dependent variable is a discrete count, Poisson regression is a

natural model choice (Cameron & Trivedi, 1986, 1990; Gurmu, 1991; Hausman et al., 1984;

Lee, 1986). Poisson models are particularly attractive for modeling count data because the

model has been extended into a regression framework (Lee, 1986), it has a simple structure,

and it can be easily estimated (Greene, 1993; Lee, 1986).

However, this simplicity is the result of some limiting assumptions, violations of which

may have significant affects on the reliability and efficiency of the model coefficients. The most

significant criticism of the Poisson model is of its assumption that the variance of the dependent

variable equals its mean (Cameron & Trivedi, 1986; Greene, 1993; Lee, 1986). Poisson

regression also assumes that each occurrence is independent of the number of previous

occurrences, and the expected number of occurrences is identical for every member of the

sample.

Research has addressed some of these limitations by developing tests for

overdispersion (e.g., Cameron & Trivedi, 1986, 1990; Gurmu, 1991; Gurmu & Trivedi, 1992;

Lee, 1986). Overdispersion occurs if the distribution's variance is greater than the distribution's

mean (Greene, 1993). Overdispersion causes the estimates of standard errors to be less than

their true value, which leads to inflated tcoefficients and Type I errors.
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The distribution of absences has not been compared to the Poisson distribution in terms

of overdispersion. Further, overdispersion will depend on how the data is aggregated (e.g., by

the month, year, etc.). One approach for dealing with overdispersed data is to use a less

constrained model (Cameron & Trivedi, 1986; Gurmu, 1991; Lee, 1986), such as the Negative

Binomial model. Another approach is to correct the t-values based on an estimate of the

dispersion. Despite its limiting assumptions and the availability of alternatives, the implications

of Poisson regression for absenteeism research should be considered.

Overdispersed Poisson Regression Model

If overdispersion exists, one method of correcting for its implications, described by

Gardner et al. (1995), is called Overdispersed Poisson Regression. This technique entails

estimating a dispersion parameter and using it to modify the t-tests resulting from a Poisson

regression.

The overdispersion term is a function of the squared deviation from its expected value

(see Gardner et al., 1995, pg. 397):

∅ = (N – J)-1  ∑ {yI  - µ [XI,dI])
2  /  µ [XI,dI ]  }

N = Number of cases

J = Number of independent variable

yI = Observed value

µ [XI,dI] = Predicted value

Each squared deviation is then divided by that score's variance assuming that the standard

Poisson model were true (Gardner et al., 1995). If the variance equals the mean, then as the

sample size approaches infinity, the deviation score will equal one. Because the µ [XI,dI]

stimates are chosen to fit the specific sample of yI, the deviation score sum needs to be

adjusted so the dispersion term will still approximate one if the assumptions of the Poisson

model are met with less than infinite sample size (Gardner et al., 1995).

The value of ∅can be tested to see if the overdispersion is statistically significant

(Gardner et al., 1995), but there are also many other methods for testing overdispersion (e.g.,

Cameron & Trivedi, 1990). Of more immediate use, the value of ∅can be used to modify the

results from a Poisson regression. If significant overdispersion exists but ∅ is assumed to equal

one, then the estimated variance of the regression coefficients will be smaller than their true

values (Gardner et al., 1995). This will result in inflated t-tests for the regression coefficients.

The Poisson regression results can be corrected by multiplying the Cov (B) by ∅; or, the t-tests
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computed by the Poisson regression can be divided by the square root of ∅ (Gardner et

al.,1995).

Use of the Overdispersed Poisson regression model, as demonstrated by Gardner et al.

(1995) resulted in t-test scores that were dramatically lower than those generated by a Poisson

model. The results of the Overdispersed Poisson regression model were also similar to those

from a Negative Binomial regression model. Yet, it is still unclear how the Overdispersed

Poisson regression model would compare to the other models described in this paper.

Negative Binomial Model

Although the Overdispersed Poisson regression model addresses the assumption of

Poisson regression that the mean equals the variance, other research on absenteeism calls into

question the other assumptions of the model for analyzing absence data. Research has shown

that past absences are one of the best predictors of future absences (Ivancevich, 1985; Morgan

& Herman, 1976; Waters & Roach, 1979), thus calling into question the independence

assumption of Poisson models. Additionally, theoretical models of absenteeism (e.g., Blau &

Boal, 1987; Gibson, 1966; Nicholson, 1977; Rhodes & Steers, 1990; Steers & Rhodes, 1978)

commonly suggest that absenteeism is a function of the construct ability to attend work, which

includes illness and accidents, family responsibilities, and transportation problems. These

models suggest that individual characteristics cause (or at least correlate with) absenteeism,

thus suggesting that the expected number of absences for individuals will differ. When the mean

level of absences is expected to differ across cases, the Multiple Approaches 12 Negative

Binomial model may be more appropriate (Gardner et al., 1995).

The Negative Binomial model is one of the more general count models (Cameron &

Trivedi, 1986; Gurmu, 1991; Gurmu & Trivedi, 1992; Lee, 1986). In fact, the Poisson model is a

special case of the Negative Binomial model (Cameron & Trivedi, 1986). Negative Binomial

models can take a number of forms. Commonly, they are categorized through one of two

specifications of the variance of the dependent variable: one, Var(y) = (1 + a)E(y), or two, Var(y)

= E(y)*(1 + a)E(y), where a is positive. The former case implies a constant variance-to-mean

ratio; the latter case implies a variance-to-mean ratio that is linear (Cameron & Trivedi, 1986).

Clearly, there are even more possibilities; however, this study will focus on the first case, in part

because it is simpler, but primarily because this study has a practical focus and only the former

model was included within a commonly available statistics package (e.g., Greene, 1992). As

noted earlier, there is a dearth of literature comparing the effects of different types of modeling

methods. However, there are also some exceptions to this for the Negative Binomial model.
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Cameron and Trivedi (1986) compare the methodological implications and results of

analyzing count data for a number of models, including OLS, Poisson, and Negative Binomial

models. Out of 12 independent variables at an alpha level of .05, the OLS model revealed four

significance coefficients. The Poisson model revealed the same four significant coefficients plus

five others; the Negative Binomial model revealed the same four as the OLS model, two

significant coefficients also found by the Poisson model, and one significant coefficient that was

not detected by either the OLS or Poisson regression models. The authors conclude by

recommending a sequential modeling strategy in which one begins with the basic Poisson

model and proceeds to increasingly flexible and data-coherent models (Cameron & Trivedi,

1986).

A similar illustration can be found is an article that focused on developing and adapting

models of counts for panel data (Hausman et al., 1984). Although comparing model types was

not the focus of the study, the piece did show results for OLS, Poisson, and Negative Binomial

models. In one instance, the OLS model showed two of seven coefficients to be significant. The

Poisson model showed five of the seven to be significant, and the Negative Binomial model

showed three of the seven to be significant. In a second instance, the OLS model showed one

of two coefficients to be significant, while both the Poisson and Negative Binomial models

showed both coefficients to be significant. Although Hausman et al. (1984) do not specifically

discuss the significance of these differences, they do point out that the Negative Binomial model

better represents the data as illustrated by the log-likelihood values.

Both of these studies are useful demonstrations of alternative modeling strategies.

Unfortunately, they do not shed much light on the meaning of significant coefficients or the

implications of the various approaches. A more explicit comparison of modeling techniques to

demonstrate the implications of various models for absenteeism research is needed.

Ordinal Logit and Ordinal Probit

Another way to model absence data is to take advantage of its ordered nature. The

Ordered Logit and Probit models have come into fairly wide use as a means for analyzing

discrete, ordered data (Zavoina & McElvey, 1975).

The models are built around a regression framework, and thus are relatively easy to

estimate. Additionally, the Binomial Probit and Binomial Logit models can be seen as special

cases of their corresponding ordinal models. The differences between the Ordinal Logit and

Probit models are similar to the differences between their binomial counterparts. The underlying

distributions of both models are similar in the middle of the distribution, but the logit model is

considerably heavier at the tails (Greene, 1993). While some research has discussed
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justification of one model over another (Amemiya, 1981), the issue remains unresolved and

does not seem to make much of a difference (Greene, 1993).

A disadvantage of these models is that interpretation of their coefficients is highly

complex (Greene, 1993). Further, although absence data is ordered, ordinal analysis may not

be meaningful. Specifically, the difference between four absences and three absences is

conceptually the same as the difference between six absences and five absences. Additionally,

ordinal models require that there are instances of each level. So, if modeling yearly absences,

which may range from zero to 40, if no one was absent 25 times, the ordinal model cannot be

estimated. This can be corrected by either truncating the distribution, or renaming the instances

of absences above 25 to be one less. The first remedy opens an entirely different issue about

the effect of truncation on models of counts, an issue that will not be addressed by this paper.

The second remedy will also work, but would make interpretation of the coefficients even more

confusing, and would make predictions of future levels of absences confusing at least, and

perhaps impossible. In sum, ordinal models may not always be applicable to absence-like data;

one the other hand, it may be appropriate in certain circumstances, and at least evaluation of

the methodologies seems warranted. The author found no comparisons of ordinal models to

other models for count data for more than the bivariate case.

Simulation Tests

The studies that have compared various methodologies have all revealed that different

models vary somewhat in terms of what coefficients are identified as significant (Baba, 1990;

Cameron & Trivedi, 1986; Hausman et al., 1984). However, simply the existence of more

significant coefficients does not necessary mean a model is better. Indeed, this discrepancy

harks back to the issue of Type I versus Type II errors. For example, in a comparison of two

models, one of which shows one more significant coefficient, either one model is exhibiting a

Type I error, or the other model is exhibiting a Type II error. The stress in social science

research has generally been on minimizing the chance of Type I errors. Therefore, this piece

will concentrate on evaluating the extent to which these various models are prone to this sort of

error. In other words, this paper will compare how likely these models are to yield false

positives.

To compare the sensitivity of the above models (OLS, transformed dependent variable

OLS, Tobit, Poisson, Overdispersed Poisson, Negative Binomial, Ordered Logit, and Ordered

Probit), a simulation will be employed. Specifically, simulation will be used to count the number

of times that each model incorrectly identifies a significant relationship.
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The dependent variable will be a measure of absences. Because the way the dependent

variable is generated will affect the results, we will not rely on any common mathematical

distribution (e.g., a chi-square, squared normal, etc.) to generate the variable. Rather, the

variable will be generated to resemble a distribution that has been reported in literature on

absenteeism (Hammer & Landau, 1981; Harrison & Hulin, 1989; Rushmore & Youngblood,

1979). The five distributions that will be used include a variety of aggregations (monthly to three

years) and have varying degrees of skewness and kurtosis. Additionally, because these

distributions are based on actual absenteeism data, the simulations will be realistic and we

avoid the problem of developing a distribution of absences that has an a priori relationship with

one of the models. Because the distributions used in this paper are based on estimates from

published figures rather than from the original data, the distributions in this piece may not

exactly match those upon which they are based. Further, the distributions may have been

changed slightly to facilitate simulation, such as truncating the distribution after the probability of

a individual levels of absences dropped below one percent. The distributions used in this paper

and their summary statistics are shown in Figure 1.
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Figure 1. Distribution of absenteeism variables and summary statistics.
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The simulation will estimate the effects of model type, distribution of the dependent

variable, sample size, and distribution of the independent variables. The eight models and five

distributions have been described above. To determine if sample size impacts the sensitivity of

these models to errors, simulations will be run with samples of 100 and 1000. Because past

absences are frequently used to predict future absences (e.g., Ivancevich, 1985; Clegg, 1983),

some simulations will be run with the independent variable following the same distribution as the

dependent variable. This will allow the simulation to determine if the distribution of the

independent variable affects the likelihood of Type I errors.

The simulation variables will be completely crossed, which permits the assessment of

the independent effects of each factor on the likelihood of Type I errors. Crossing the factors

yields 160 simulations scenarios (8 x 5 x 2 x 2). For each simulation, the dependent variable will

be generated from one of the absence distributions shown in Figure 1. Each model will have 10

independent variables drawn either from a normal distribution (mean = 0; SD = 1) or the same

distribution as the dependent variable. Either 100 or 1000 cases will be randomly generated,

with each variable being generated independently. Thus, there is no a priori relationship

between the random independent variables and the dependent variable. For each scenario, 50

simulations will be performed. For each set of generated data, each of the eight models

described above will be used to determine the relationship between the independent variables

and the dependent variable. Any significant findings are spurious relationships, and thus Type I

errors.

The number of Type I errors will be recorded at the p<.10, p<.05, and p<.01 levels. If

significantly more than the expected number of Type I errors occur, such as more than 10

percent at alpha equals .1.0, then we can conclude that the model is prone to Type I errors.

Although not a direct test of Type II errors, if significantly less than the expected number of

coefficients are statistically significant, then the t-tests may be too conservative, and thus are

prone to Type II errors.

The proportion of Type I errors by model are shown in Table 1. T-tests reveal that, for a

number of models, the number of Type I errors significantly differs from the expected level. Most

obviously, the Poisson model incorrectly identifies far more significant relationships than

expected by the alpha level. However, the Tobit model also shows significantly more false

positives than would be expected by chance. One the other hand, some models identify

significantly fewer false positives than the alpha levels would suggest. The Ordered Probit

models has fewer Type I errors at alpha=.10, and the Ordered Probit model has fewer Type I



Multiple Approaches WP 96-07

Page 16

errors at the alpha=.10 and alpha=.05 levels. The Negative Binomial model has fewer false

positives at all three alpha levels.

Table 1

Type I Errors by Model

Mean Number Mean Number Mean Number
of Type I Errors of Type I Errors of Type I Errors

Model N     at p < .10     at p < .05     at p < .01

OLS 1000      0.99      0.47      0.10
    (0.96)     (0.67)     (0.33)

Transformed OLS 1000      0.96      0.50      0.10
    (0.95)     (0.70)     (0.32)

Tobit 1000      1.12*      0.57*      0.14*
    (1.06)     (0.78)     (0.39)

Poisson 1000      4.65**      3.91 **      2.70**
    (2.15)     (2.09)     (1.86)

Overdispersed 1000      1.04      0.54      0.12
Poisson     (1.01)     (0.73)     (0.37)

Negative Binomial 1000      0.71**      0.33**      0.05**
    (0.87)     (0.62)     (0.25)

Ordered Logit 571      0.88*      0.45      0.10
    (0.91)     (0.70)     (0.32)

Ordered Probit 571      0.87*      0.43*      0.08
    (0.92)     (0.68)     (0.29)

Expected      1.00      0.50      0.10

* p<.05;**p<.0001

Each simulation contained 10 independent variables. Significance indicates deviation from the
expected number of Type I errors. 1000 simulations were conducted for each model. Because
the Ordered Logit and Ordered Probit required that there be no missing values in the middle of a
distribution, the models were incalculable in a number of instances, particularly when the
simulation was conducted with the smaller sample size.
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These results suggest that Poisson regression is clearly inappropriate for analyzing

absence data, unless the model is corrected for overdispersion. The Tobit model is also prone

to Type I errors. Although these simulations did not directly test Type II errors, the Ordered

Logit, Ordered Probit, and Negative Binomial models appear to be more conservative than the

chosen alpha levels imply. This may suggest that the models might not identify true

relationships, but further research is needed to clarify this issue. Nonetheless, it appears that

significant results, such as from the Negative Binomial model, are less likely to be Type I errors

than significant results from other models. Of note in these results is that OLS regression yields

the number of Type I errors expected by chance. This implies that previous results using OLS

regression are valid, or at least are not Type I errors.

MANOVA was used to determine if the characteristics of the analysis affect the number

of Type I errors. The dependent variables were the number of false positives at all three alpha

levels. Simulation characteristics and first order interactions were the independent variables. All

the independent variables were treated as categorical. Results of the MANOVA are shown in

Table 2.
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TABLE 2

Multivariate Analysis of Variance Results

Wilks'
Source         DF      F Lambda

Main Effects
Analysis Model         21, 20316   581.26 0.26**

Distribution of Independent Variable          12,18719     41.36 0.93**

Sample Size             3, 7075       3.58 1.00*

Distribution of Dependent Variable             3, 7075       4.42 1.00**

Interactions

Analysis Model x Distribution of Ind. Var         84, 21166     47.73 0.60**

Analysis Model x Sample Size           1, 20316       1.23 1.00

Analysis Model x Distribution of Dep. Var.         21, 20316       0.81 1.00

Distribution of Ind. Var. x Sample Size          12,18719       3.04 1.00**

Distribution of Ind. Var. x Distribution of Dep. Var  12,18719       2.39 1.00**

Sample Size x Distribution of Dep. Var  3,7075       4.83 1.00**

Total       192, 21214     77.28 0.20**

* p<.05;**p<.01

Results suggest that all the main effects are significant, as are a number of interactions.

The model type, distribution of the dependent variable, sample size, and distribution of the

independent variables all affect the likelihood of Type I errors. Additionally, this likelihood

depends on the interactions between the distribution of the dependent variable and the model

type, the sample size, and the distribution of the independent variables. The effect of sample

size also depends on the distribution of the independent variables. Based on these results, it is

possible to estimate which models produce too many or too few Type I errors. These estimates,

grouped by simulation characteristics, are shown in Table 3.
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Table 3
Model Performance Under Simulation Scenarios

Models Performing Models Performing
Significantly More Models Significantly Less
Conservatively Performing Conservatively
Than Expected Appropriately Than Expected

A 100 Normal Logit, Neg-Bin, OLS, T-OLS, Tobit, Poisson
Probit, Ov-Poisson

A 100 Absent-like Logit, Neg-Bin, OLS, T-OLS, Tobit, Poisson
Probit, Ov-Poisson

A 1000 Normal Logit, Neg-Bin, OLS, T-OLS, Poisson
Probit, Ov-Poisson, Tobit

A 1000 Absent-like Logit, Neg-Bin, OLS, T-OLS, Poisson
Probit Ov-Poisson Tobit

B 100 Normal Neg-Bin OLS, T-OLS, Ov-Poisson Tobit, Poisson
B 100 Absent-like Neg-Bin, T-OLS, OLS, Ov-Poisson

Tobit, Poisson,
B 1000 Normal Logit, Neg-Bin, Ov-Poisson, Poisson

OLS, T-OLS, Probit, Tobit
B 1000 Absent-like Neg-Bin Logit, OLS, T-OLS, Poisson

Probit Ov-Poisson Tobit
C 100 Normal Neg-Bin OLS, T-OLS, Ov-Poisson Tobit, Poisson
C 100 Absent-like Neg-Bin OLS, T-OLS, Ov-Poisson, Tobit Poisson
C 1000 Normal Neg-Bin Logit, OLS, T-OLS, Poisson

Probit, Ov-Poisson, Tobit
C 1000 Absent-like Neg-Bin Logit, OLS, T-OLS, Poisson

Probit Ov-Poisson Tobit
D 100 Normal Neg-Bin, OLS, Tobit, Poisson

T-OLS, Ov-Poisson
D 100 Absent-like Ne -Bin T-OLS OLS, Ov-Poisson,

  Poisson, Tobit

D 1000 Normal Neg-Bin, T-OLS, OLS, Ov-Poisson, Tobit Poisson
Logit, Probit

D 1000 Absent-like Logit, Neg-Bin, OLS, T-OLS, Poisson
Probit Ov-Poisson Tobit

E 100 Normal Neg-Bin, OLS T-OLS, Ov-Poisson, Tobit Poisson
E 100 Absent-like Neg-Bin OLS, T-OLS, Ov-Poisson, Tobit Poisson
E 1000 Normal Neg-Bin Logit, OLS, T-OLS, Poisson

Probit, Ov-Poisson, Tobit
E 1000 Absent-like Neg-Bin Logit, OLS, T-OLS, Poisson

Probit Ov-Poisson Tobit

Note: Models classified as performing more conservatively than expected had significantly
(p < .05) less Type I errors than expected by chance. Models classified as performing less
conservatively than expected had significantly (p < .05) more Type I errors than expected by
chance.
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Although the characteristics of the simulation do not vary greatly (e.g., only two sample

sizes are considered), it is possible to treat some of these characteristics as continuous

numerical variables (treat sample size as continuous and substitute the skew and kurtosis as

continuous numerical independent variables instead of the categorical variable of distribution

type) and use regression analysis to predict how skew, kurtosis, and sample size influence the

number of Type I errors. These formulae can then be used to estimate the likelihood of Type I

errors for any distribution or sample size. Because of the size of the formulae, they are not

reported here; they are, however, available from the author.

Simulations were not run for Type II errors. This is because a standard simulation

methodology would produce biased results. The way a model was specified, even the way an

error or noise term would be added to the model, would bias the simulation in favor of one type

of model over another. Indeed, if the "true" relationship underlying number of absences was

known, research such as this piece would be unnecessary. Instead, this paper will apply these

models to actual data to demonstrate how typical absence research would be affected by model

choice.

                                            Interpreting Actual Data

Data are from blue collar workers at a midwestern company. Two absence measures

were collected: number of excused absences, and number of unexcused absences. For an

absence to be excused, the worker needs to obtain his or her supervisor's approval. Thus,

calling in sick would generally be considered an excused absence; however, simply not showing

up to work counted as an unexcused absence. Absence data was aggregated over a year. The

independent variables include the number of days of each type of absence from the previous

year, age, tenure, sex, marital status, and number of children. A total of 198 employees worked

at the firm for all of 1991 and 1992, and of these, there was complete data on 195 subjects.

Note that the intent of this piece is not to provide a test of a theoretical model with

absences; rather, this paper will simply illustrate the different effects of various models. The

models will be realistic, though, in that they will resemble what a researcher might generate.

Specifically, the models will look for significant effects of the aforementioned variables for

predicting each kind of absence and will also test the significance of the interaction of lagged

absences and sex (i.e., to determine if the relationship between past absences and future

absences differs by sex). Summaries of the variables used in this study are shown in Table 4.
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TABLE 4

Summary of Actual Data

     Mean       Std      1     2    3   4 5         6         7        8
1. Excused 1992 Absences           2.28      3.26   1.00

2. Unexcused 1992 Absences           0.56      0.87     .35 1.00

3. Excused 1991 Absences           1.93      2.58     .48   .26 1.00

4. Unexcused 1991 Absences           0.39      0.74     .30   .31   .21 1.00

5. Age         35.47      8.85     .07  -.13   .07  -.03   1.00

6. Tenure           8.68      5.94    -.17  -.27  -.13  -.04     .45      1.00

7. Sex (1 = Female; 0 = Male)           0.34      0.47     .32   .16   .18   .05     .03-       .29    1.00

8. Marital Status (1 = Married; 0 = Single) 0.82       0.39    -.06    -.09         .00        -.05     .28        .14     -.08    1.00

9. Number of Children           1.84      1.57    -.07    -.14        -.03        -.05     .12        .06      .01     .43

Note: N =198. Coefficients greater than .14 are significant at p < .05.

1. The skew of Excused 1992 Absences is 1.99. Its kurtosis is 3.99.

2. The skew of Unexcused 1992 Absences is 1.69. Its kurtosis is 2.79.

3. The skew of Excused 1991 Absences is 1.63. Its kurtosis is 2.51.

4. The skew of Unexcused 1991 Absences is 2.08. Its kurtosis is 3.92.
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Results from the eight models are shown in Tables 5 and 6. Of course, the "true"

relationships are unknown; rather, the situation is similar to what any researcher would face

when presented with statistical results. The comparison of models, though, helps illustrate the

different effects of the models; the differences between the models highlight the difficulty

associated with absenteeism research.

Table 5

Model Outputs for Actual Data: Dependent Variable is Number of

Excused Absences in 1992

Model

Transformed Overdispersed    Negative    Ordinal Ordinal
Variable OLS     Variable/OLS Tobit Poisson      Poisson   Binomial      Logit  Probit

'91 Excused 0.27         0.38 0.54    0.13            0.13        0.17           0.26   0.15
Absences            (0.10)*        (0.088)**       (0.16)**   (0.024)**        (0.043)**       (0.065)**    (0.078)** (0.047)**

Age 0.033         0.0039          0.018    0.012            0.012        0.0061      -0.0027  0.0045
             (0.026)        (0.0088)        (0.041)   (0.0058)*         (.010)       (0.012)       (0.018) (0.011)

Tenure              -0.065        -0.017           -0.097   -0.035           -0.035       -0.038        -0.033 -0.023
               (.039)+        (0.013)          (0.064)**  (0.010)**         (0.019)*       (0.019)*      (0.028) (0.017)

Sex               0.19         0.24  1.02    0.44             0.44        0.51            0.47   0.29
             (0.56)        (0.22) (0.91)   (0.15)**             (.27)       (0.30)+       (0.41) (0.26)

Married              -0.57        -0.012 -0.48   -0.24            -0.24     -0.093          -0.11 -0.52
            (0.58)        (0.20) (0.92)   (0.14)+              (.24)     (0.29)          (0.40) (0.24)

# Children          -0.056        -0.011 -0.13   -0.015            -0.015     -0.0043       -0.022          -0.014
            (0.14)        (0.047) (0.22)   (0.031)+          (0.056)     (0.080)        (0.097) (0.058)

'91 Absences      0.58         0.22  0.46    0.040             0.040      0.0098        0.20  0.11
*Sex    (0.16)**        (0.14)            (0.25)+     (0.031)              (.055)     (0.11)         (0.12)+ (0.073)

R2               0.34          0.29      -        -                  -          -             -      -

Pseudo R2 -           -  0.32    0.35             0.35       0.31          0.31  0.31

Log          -465.34     -476.81         -359.89    -439.32        -439.32 -362.15     -347.12        -345.50
Likelihood

Note: N =195
+  p < .10
*  p<.05
** p<.01

1. Sigma equals 3.92, with a standard error of 0.29, and is significant at p < .01.
2. Overdispersion, ∅, equaled 3.18, and is significant at p < .01.
3. Alpha equals 1.15, with a standard error of 0.22, and is significant at p < .01.
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Table 6

Model Outputs for Actual Data: Dependent Variable is Number of

Unexcused Absences in 1992

Model

Transformed    Overdispersed     Negative     Ordinal Ordinal
Variable OLS     Variable/OLS Tobit Poisson    Poisson               Binomial Logit Probit

'91 Unexcused       0.41       0.31  0.83    0.57           0.57          0.57 0.88  0.53
Absences (0.10)**      (0.096)**         (0.24)**   (0.12)**         (.13)**             (0.13)**       (0.24)** (0.14)**

Age -0.001         -0.0020           -0.0047   -0.000017   -0.000017        -0.000021    -0.0077    -0.0018
(0.077)        (0.054)            (0.019)   (0.012)          (.013)        (0.014)         (0.021) (0.012)

Tenure -0.031         -0.023             -0.091   -0.073         -0.073        -0.073          -0.11 -0.057
                (.012)**      (0.081)**         (0.032)**   (0.022)**     (0.024)**          (0.026)**      (0.035)* (0.021)**

Sex  0.24         0.12                0.53    0.50           0.50         0.50              0.59  0.34
              (0.15)+        (0.11)              (0.37)   (0.25)*          (.27)*        (0.28)+          (0.41)+ (0.25)

Married  0.051       0.039  0.21    0.12         0.12         0.12 0.20  0.13
              (0.17)      (0.12)              (0.43)   (0.27)          (.30)         (0.33)            (0.51) (0.32)

# Children            -0.66        -0.040             -0.16   -0.13        -0.13        -0.13             -0.16 -0.11
              (0.041)        (0.028)            (0.11)   (0.074)+      (0.081)         (0.082)          (0.13) (0.074)

'91 Absences       -0.18         -0.0059           -0.30  -0.31        -0.31        -0.30             -0.33 -0.21
       *Sex              (0.16)      (0.16)              (0.37)  (0.19)+          (.21)        (0.29)            (0.43) (0.27)

R2 0.19        0.18     -      -            -           -   -    -

Pseudo R2    -           -  0.22   0.23         0.23            0.23 0.23 0.23

Log           -229.82   -243.85          -201.89   -179.44    -179.44    -179.44         -176.15  -175.98
Likelihood

Note: N = 195
+  p < .10
*   p < .05
** p < .01

1. Sigma equals 1.69, with a standard error of 0.16, and is significant at p < .0l.

2. Overdispersion, e, equaled 1.20, and is not statistically significant.

3. Alpha equals 0.054, with a standard error of 0.20, and is not statistically significant.

statistics.



Multiple Approaches WP 96-07

Page 24

Perhaps some light is shed on this divergence by examining the log-likelihood values. The

Tobit, Poisson, Negative Binomial, Ordered Logit, and Ordered Probit models are all computed

by maximizing this value. Although OLS models do not use this method, it is possible to

compute a log likelihood (e.g., Greene, 1992):

                          -Log L = - (N/2) [ 1 + 1n2π + 1n e’e / N)

                    N= Number of cases

                    e = Vector of residuals

The log likelihood can be computed for the transformed OLS regression, only the residuals need

to be recalculated to reflect the difference between the square of the predicted term and the

actual expected number of absences.

For modeling excused absences, as might be expected, the OLS regressions had the

lowest (i.e., worst) log likelihoods. The Poisson regression also had a comparatively poor

log-likelihood value. The remaining models had similar log-likelihood values. When modeling

unexcused absences, where overdispersion was not statistically significant, the Poisson,

Negative Binomial, and ordinal models had comparable log likelihood values, OLS regressions

were still worst, and the Tobit model was somewhat worse than average.

Based on the regressions predicting the number of Type I errors described earlier, it is

possible to estimate the propensity of these models for Type I errors given these samples'

characteristics. Although further simulation is needed to make these estimates more accurate,

the results are informative. Based on the skew, kurtosis, and sample size of excused absences

(reported in Table 4), and assuming the independent variables are normally distributed, Probit is

the most conservative model in this case. OLS, transformed OLS, Logit, and Negative Binomial,

are also more conservative than the alpha levels suggest. Tobit, Overdispersed Poisson, and

Poisson models are expected to yield more false positives than expected due to chance. For

unexcused absences, the Probit, Negative Binomial, and OLS regression models are

conservative. The Tobit and Poisson models are expected to produce too many Type I errors.

The Logit, transformed OLS, and Overdispersed Poisson models are expected to produce Type

I errors as frequently as suggested by the alpha levels.

With an understanding of the probability of Type I errors, and given the various

log-likelihood values from the models, it is possible to make some conclusions regarding the

significance of the results reported in Tables 5 and 6. For both excused and unexcused

absences, prior absences is a highly significant predictor of future absences. It may also be

concluded that tenure is significantly negatively related to absences in both cases, even though

some models do not show a significant relationship between tenure and excused absences. The
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significance of sex is questionable. It is likely that the high significance shown by the Poisson

model is a Type I error; however, as the simulation shows the Negative Binomial model to be

conservative, the marginal effect discovered here should be given some weight. The interaction

term also receives some mixed signals of significance, although these results seem more

questionable.

Conclusions

The implications from these analyses are not entirely clear. What is clear, though, is that

the type of analysis impacts observed results, and characteristics of what is being studied

affects the accuracy of the type of analysis. The results of this study, although not providing a

decisive best analysis strategy, do provide some insights that may benefit future absenteeism

research, and perhaps more generally, benefit research involving count data.

The simulation results suggest that OLS regression is not overly sensitive to false

positives. While the use of OLS regression with absenteeism data may still yield false negatives,

we can conclude from this study that researchers of absenteeism do not need to ignore the

significant findings from previous analyses.

Another implication of this study is that researchers should not use Poisson regression

to analyze absenteeism data. Indeed, these results indicate that the Poisson regression can

lead to a large number of false positives. At the very least, researchers would be better off even

using OLS regression, but Overdispersed Poisson regression (see Gardner et al., 1995) seems

promising as both an easy and accurate way of modeling count data. Despite previous results

suggesting that the Tobit model is more sensitive than OLS (Baba, 1990; Hammer & Landau,

1981), these results suggest this sensitivity may be Type I errors. Finally, Negative Binomial

seems a promising method of analyzing absence data. The model is very conservative in that it

frequently yields false positives significantly fewer times than expected based on the alpha

level. Although this may mean Negative Binomial models are prone to Type II errors,

researchers may have more faith in findings that this model says are statistically significant.

The use of multiple methods also receives some support. Although the availability of

methods depends on the statistics package being employed, it was relatively simple to perform

all the analyses shown here. Comparisons across models, both in terms of their coefficients and

log-likelihoods, may provide substantial information in cases where the choice of appropriate

methodology is unclear.

Hopefully, future absenteeism research will move beyond simple OLS regression. The

Overdispersed Poisson regression model is a promising alternative in that it is designed for

count data, yields roughly the expected number of false positives, and is easily estimated. The
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Negative Binomial models may be appropriate as a conservative test of significance. As

suggested by other researchers (Baba, 1990; Hammer & Landau, 1981), the use of multiple

methods of analysis appears to hold some hope for coping with the difficulties of absenteeism

research. Used alone, or as part of a series of models, the Overdispersed Poisson regression

and Negative Binomial model may help clarify hypothesis tests.

Future research should address the methodological issues of absenteeism research by

exploring other potential models or methods of model comparisons, which perhaps may lead to

a definitive best way to analyze absenteeism data. More extensive simulation may provide

researchers with a better understanding of which models are most appropriate for certain

circumstances, which could have implications beyond the domain of absenteeism. Additionally,

more thought needs to be given to the issue of the sensitivity of these models to Type II errors.

But perhaps most importantly, research on absenteeism should begin using additional, or

perhaps alternative methodologies to perform hypothesis tests. The results from this paper

confirm that previous empirical findings are still valid; however, this piece also shows that a

number of alternatives to OLS regression exist which may help further the understanding of the

correlates or causes of absenteeism.
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