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I. INTRODUCTION

Recent research using matched student-teacher data has confirmed that teaching quality plays

an important role in producing student test score improvement in elementary and middle schools

(Rockoff [2004]; Hanushek et al. [2005]; Harris and Sass [2006]; Aaronson, Barrow, and Sander

[2007]; Kane, Rockoff, and Staiger [2008]; Lockwood and McCaffrey [2009]). Furthermore,

Chetty, Friedman, and Rockoff (2011) show that estimated teacher effects correspond to substan-

tial impacts on adult earnings and other long-run outcomes. These findings have intensified con-

cerns about the ability of underperforming schools to recruit and retain good teachers. One fears

that the students who are already saddled with the least supportive parents, the most dangerous

neighborhoods, and the most rundown schools will also be taught by the least effective teach-

ers. However, the existing research has struggled to demonstrate convincingly the extent to which

access to quality teaching is unequal.

Furthermore, even if one finds that good teachers are concentrated at schools with well-supported

students, policies that incentivize relocation of high quality teachers may not succeed in raising the

performance of the most disadvantaged students. First, these teachers may get systematically as-

signed to the honors students within their new schools. Second, student performance at the targeted

schools may be relatively insensitive to teacher quality. For example, some schools’ facilities may

be in such a state of disrepair or their disciplinary policies may be so lax that even good teachers

cannot raise the performance of their students.

Thus, this paper aims to answer three questions: (1) How much does teaching quality vary

across public high schools and across teachers within high schools? (2) To what extent are students

who are otherwise disadvantaged more likely to attend the schools and the classes within schools

with ineffective teachers? (3) Would the performance of such disadvantaged students improve

substantially if they were taught by better teachers?

The key challenge to characterizing inequality in the allocation of teacher quality has been

isolating average teacher quality at a school from the effects of student sorting, principal qual-

ity, school facilities, and the surrounding neighborhood. Much of the early literature on teacher

value-added focused only on within-school variation in teacher quality.1 Other papers that do con-

sider differences in teacher quality across schools generally either estimate an upper bound on

the variance in teacher quality that also reflects differences in other school-level inputs,2 or suffer

1. See e.g. Rockoff (2004); Rivkin, Hanushek, and Kain (2005).
2. See e.g. Hanushek et al. (2005).
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from limited identifying variation (either small samples of schools or small samples of transferring

teachers connecting each school).3 In parallel work, Sass et al. (2010) do employ large samples

of teachers and schools in both North Carolina and Florida in an effort to determine whether high-

poverty schools generally employ inferior teachers. However, they do not attempt to separately

identify average teacher quality from other school-level inputs. They do test for confounding in-

fluence of superior school-level inputs at low-poverty schools using differences in estimated effec-

tiveness for teachers who move between high- and low-poverty schools. However, as demonstrated

below, the validity of their test requires that an exogenous mobility condition be met, which they

do not verify.4 The only paper which provides a rigorous treatment of the conditions necessary for

identification and precise estimation of school average teacher quality is parallel work by Kirabo

Jackson (2010), whose focus is on teacher-school match effects, rather than the impact of teacher

allocation on student performance inequality.

While one strand of the literature investigates the extent to which schools serving disadvantaged

students hire teachers with inferior credentials,5 and another examines whether such schools dis-

proportionately lose their best teachers,6 the analysis below combines the effects of both types of

between-school teacher sorting along with within-school sorting into a comprehensive account of

the contribution of the existing mechanism of teacher allocation to disparities between the perfor-

mances of the least-prepared and best-prepared students. While other research has highlighted the

potential bias in estimates of teacher quality that stems from non-random classroom assignment7,

this paper is the first to examine the extent to which students’ classroom assignments contribute to

the variation across students in average test performance over a high school career.8 It also consid-

ers the impact of classroom assignments on the relative performance of disadvantaged students, to

the extent that they are systematically assigned to classes with their schools’ less effective teachers.

Furthermore, to this point nearly all of the attempts to examine the impact of teacher quality

have used elementary or middle school test scores.9 However, there are a number of advantages

to using high school performance data to study the impact of teaching quality. First, we still

3. See e.g. Aaronson, Barrow and Sander (2007).
4. Sass et al. (2010) also focus much of their effort on differences in the levels and marginal impacts of teacher

experience and other observable teacher credentials across low- and high-poverty school environments.
5. See e.g. Lankford, Loeb, and Wyckoff (2002); Steele, Murnane, and Willet (2010).
6. See e.g. Hanushek et al. (2005); Boyd et al. (2007); Jackson (2009).
7. See e.g. Clotfelter, Ladd, and Vigdor (2006); Rothstein (2010).
8. Koedel (2008) does examine the collective effect of high teachers on the probability of graduating high school
9. These include: Hanushek et al. (2005); Boyd et al (2007); Goldhaber, Gross, and Player (2007); Kane, Rockoff,

and Staiger (2008); Kane and Staiger (2008); Lockwood and McCaffrey (2009); Jackson (2010); Rothstein (2010);
and Sass et al. (2010).
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have limited knowledge of how much the quality of teaching matters at the high school level.

While a few studies have considered teacher quality in a high school context, they have either

considered only Algebra and English (e.g. Aaronson et al. (2007) and Jackson (2012)), or have

focused only on the impact of particular observable teacher credentials (e.g. Clotfelter, Ladd and

Vigdor (2007) and Xu, Hannaway, and Taylor (2011)). Second, teacher shortages tend to be far

more severe at the high school level than at the elementary school level, and the subject-specific

knowledge needed to be an effective teacher is greater. Thus, we have more reason to be concerned

about positive assortative matching that places inferior teachers in schools with the least-supported

students. Third, high school teachers often teach four or five different classrooms each year, so that

teachers may teach over 100 students per year. Hence, although teacher impacts may be smaller

at the high school level (since teachers only spend about an hour a day with any given class), they

can be more precisely estimated.

Most of the existing literature has also ignored the possibility that teacher quality may be com-

plementary to other school-level inputs.10 However, a variety of factors could affect the extent

to which student performance responds to effective or ineffective instruction in a given school. In

schools where after-school jobs are rare, students may have more time to do well-crafted homework

assignments by good teachers, magnifying the impact of the teacher. Or, students may compen-

sate for a bad teacher by spending more time reading the textbook. Alternatively, poorly equipped

classrooms may constrain the set of teaching tools available to teachers. Strict enforcement of

common curriculum and assignments across different teachers’ classrooms for a given course at a

school may limit the damage done by an otherwise unprepared teacher, but mute the impact of a

particularly creative teacher.

By allowing the impact of effective teaching to depend on the school, I can examine whether

underprivileged students are in school or community environments that would enable them to profit

from better teaching if it were provided. Allowing for complementarity between school and teacher

quality also creates scope for efficiency gains from reallocating teachers.

I exploit administrative data from the North Carolina Education Research Data Center that per-

mits high school students in the universe of North Carolina public high schools to be matched to

their teachers and test scores in up to ten high school courses from 1997-2006. Such rich data

permit identification and estimation via non-linear least squares of a flexible education production

10. A few papers do consider possible complementarities between observable teacher characteristics and student-
level inputs, such as race-matching effects (Hanushek et al. [2005]), and differential effects of teacher experience on
students with different levels of past performance (Clotfelter, Ladd and Vigdor [2006]).
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function that features both school- and teacher-specific intercepts as well as school-specific sen-

sitivity parameters that scale the impact of a teacher’s quality. Non-parametric identification of

the joint distribution teacher quality, school quality, and school sensitivity to teacher quality stems

from a large network of nearly 3,000 teacher transfers, coupled with a testable exogenous mobility

assumption. This specification restricts a teacher’s true teaching talent to remain one-dimensional

(enabling a meaningful discussion about teacher quality), but allows his/her effective ability to

raise test scores to vary across schools. Given estimates of each teacher’s quality, I then character-

ize the way quality teaching is currently being allocated. The next three paragraphs summarize my

answers to the three questions posed above.

First, consistent with previous studies, I find considerable variation in teacher quality among

North Carolina public high school teachers: a one standard deviation increase in teacher quality

increases a student’s expected test score by .17 student test score standard deviations, enough to

move an average student from the 50th test score percentile to the 57th percentile. However, while

9% of the variation in student test scores is between schools, nearly all of this can be attributed

to student sorting. Only about 1% of the total test score variation is explained by variation across

schools in either school quality or average teacher quality. In fact, attending a school whose average

teacher quality is one standard deviation better than the average school only increases expected

test scores by .061 student test score standard deviations, holding other school-level inputs fixed.

This is only enough to move an average student from the 50th test score percentile to the 52nd

percentile. Moreover, variation in teacher experience across schools, while substantial, contributes

almost nothing to across-school test score gaps. My analysis of the allocation of teachers to classes

within schools indicates that most students tend to receive a mix of their school’s good and bad

teachers across the courses they take, so that differences in quality among teachers from the same

school only make a minor contribution to differences in average test score performance across

students over their high school careers.

Second, I find that students whose observable background would predict low achievement do

generally attend worse schools with worse teachers, but that the magnitudes of these differences

are modest. Similarly, I find that such disadvantaged students are only slightly more likely to take

classes with the relatively ineffective teachers at their schools. Overall, only about 4% of the gap

in performance between the top and bottom deciles of a regression index of student background

can be attributed to differences in the school and teacher inputs these students receive at the high

school level.
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Third, I find that schools do seem to exhibit significantly different sensitivities to teacher qual-

ity, and interestingly, schools whose students are less academically prepared entering high school

tend to be among the more sensitive schools. This implies that incentives to further equalize

teacher quality would involve no efficiency-equality tradeoff. Further analysis reveals suggestive

evidence that such schools tend be more sensitive to the permanent component of teacher skill, and

stronger evidence that such schools tend to be particularly sensitive to the level of experience of

their teachers. These results suggest that policies designed to attract talented teachers as well as

policies designed to retain existing experienced teachers have the potential to substantially boost

performance at these schools. Simulations indicate that the optimal allocation of the best teach-

ers to the schools most sensitive to teacher quality would increase state average test scores by .09

standard deviations, decrease test score variance by about 5%, and increase the scores of students

in the bottom 10% of a student background regression index by .17 standard deviations.

The remainder of the paper is structured as follows. Section II presents the educational achieve-

ment production function along with the assumptions required to justify its form. Section III dis-

cusses identification of the parameters of the function. Section IV describes the data. Section V

presents the estimation strategy. Section VI presents the estimated distributions of teacher quality,

school quality, and school sensitivity to teacher quality. Section VII examines how quality teaching

is allocated within schools and quantifies its impact on the distribution of average test scores over

students’ high school careers. Section VIII examines the contribution to achievement inequality of

the existing allocation of teachers and schools to students. Section IX interprets the findings and

concludes.

II. THE EDUCATION PRODUCTION FUNCTION

Following Todd and Wolpin (2003), I assume that the test score performance of student i at

time t, Yit, is produced using a combination of current and past inputs of the student {At
i}, family

{Ft
i}, peers {Pt

i}, teachers {Rt
i}, and schools {St

i}, subject to measurement error eit. To make the

model tractable, I assume that current and past inputs are additively separable.11 I also assume that

11. This restricts the form of path dependence; while the effects of past inputs are allowed to persist, they do not
affect the sensitivity of the student to his current inputs. For example, the model cannot capture the notion that some
teachers only teach subject matter, while others teach children how to learn for themselves or pay attention (skills that
may affect a student’s ability to learn from his next teacher regardless of subject). One might also imagine that who
a student’s peers were in previous classes partly determined his current friends, which might affect his sensitivity to
current inputs (particularly current peer inputs). This also cannot be captured by the model.
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current teacher and school inputs are additively separable from current student, family, and peer

inputs, and from the measurement error.12 We obtain:

Yict = f(Ft−1
i ,At−1

i ,Pt−1
i ,Rt−1

i ,St−1
i ) + g(Fit,Ait,Pit) + h(Rit,Sit) + eit(1)

Let the school and teacher associated with student i at year t be denoted by s(i, t) and r(i, t),

respectively. I model the contribution of school and teacher inputs to student achievement as

follows:

h(Rit,Sit) = δs(i,t) + φs(i,t)t + γs(i,t)[µr(i,t) + d(exr(i,t)t) + νr(i,t)t](2)

The first two components, δs(i,t)+φs(i,t)t, capture the collective impact of all school-level conditions

that affect student learning independently of teacher quality. δs(i,t) represents the average impact

of these inputs over the sample period. It reflects factors such as average principal quality, safety

of the neighborhood, and the quality of school facilities. For the rest of the paper, I refer to

δs(i,t) as the quality of school s. φs(i,t)t represents the transient component of school inputs, and

captures fluctuations in principal quality, crime waves, renovations of school facilities, etc. δs(i,t)

is a parameter to be estimated, while φs(i,t)t will be an error component.

The third component, γs(i,t), is a school-specific scaling factor that captures the extent to which a

school’s students respond to the quality of their teachers. The intuition behind the school sensitivity

parameter is that some schools may offer learning environments that either amplify or mute the

impact of a teacher on her students’ performance. For example, a school with a high value of

γs might feature a strict and effective disciplinary policy and classrooms with excellent acoustics,

but give teachers very little guidance as to how to craft a lesson plan. The impact of attending

this school on a student’s achievement will depend to a large extent on the quality of teachers the

school employs. At the other extreme, a school may offer such crowded classrooms or outdated

textbooks that even a very good teacher cannot raise test scores substantially; no one is learning

12. For example, this rules out the possibility that teachers have comparative advantages in working with certain
kinds of students or parents. While this assumption may seem restrictive, most of the existing research suggests that
specialization in teaching to particular parts of the student ability distribution is of secondary importance relative to
vertical differences in teacher skill (Hanushek et al. [2005]; Lockwood and McCaffrey [2009]; Aucejo (2012) finds
a somewhat larger role for teacher comparative advantages with respect to student background achievement). This
assumption also does not permit the sensitivity of students’ scores to teacher or school inputs to depend on their
parents or their own aptitude. In other words, family, individual, and peer inputs are assumed to be substitutes for
teacher and school inputs.
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regardless of who teaches them. Such a school would have a low value of γ (and perhaps a low

value of δ). Alternatively, one might imagine a high achieving school with pre-designed lesson

plans linked to instructional videos or computer applications, which again would make test scores

less sensitive to the ability of the teacher who merely monitors the workstations. This school might

simultaneously have a high value of δ and a low value of γ.

Note that many underlying school-level factors may contribute to both δs and γs. For example,

an overly lenient discipline policy might decrease both δs and γs. However, since this analysis

is focused on the impact on achievement of the overall school experiences received by different

students, I do not model the consequences of specific school policies, opting instead for a flexible

specification that places minimal restrictions on how a school can influence student performance.

I treat each γs as a parameter to be estimated, and I will generally refer to it as the sensitivity of

school s to teacher quality.

Since the median of γ will be normalized to one, the next three components, µr(i,t)+d(exr(i,t)t)+

νr(i,t)t, can be interpreted together as the quality of teaching that student i receives in period t, as

measured by the impact the teacher would have on the student’s test score in a neutral learning

environment.

First, in recognition of research indicating considerable persistent unobserved heterogeneity in

teachers’ performance, each teacher is assumed to have his/her own baseline ability to impact test

scores, captured by µr(i,t). µr(i,t) is treated as a parameter to be estimated, and I will generally refer

to µr(i,t) as teacher quality in the remainder of the paper.

Second, the function d(exr(i,t)t), assumed to be common across teachers, captures predictable

growth in teacher effectiveness with experience, exr(i,t)t.

Third, idiosyncratic year-specific deviations in a teacher’s performance from the path defined by

his/her baseline ability and experience are captured by νr(i,t)t. Such deviations might be caused by

fluctuations in teacher health, personal obligations, or even the extent to which the standardized test

in a given year happens to focus on the content the teacher teaches most effectively or intensively.

νr(i,t)t will be an error component during estimation.

Together, the expression γs(i,t)(µr(i,t)+d(exr(i,t)t)+νr(i,t)t) can be interpreted as the “effective”

quality of teaching that student i received in year t, as measured by the actual impact the teacher

had on the student’s test score.

This specification for the contribution of school and teacher inputs to achievement offers a

number of desirable features. First, the joint distribution of unobservable persistent teacher quality
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(µ) and two dimensions of unobservable persistent school effects (δ and γ) is left unrestricted.

Second, persistent teacher skill is captured by a single dimension, which enables a tractable

discussion of the distribution of teacher quality across students. However, the ability of a teacher

to raise test scores is nonetheless allowed to vary across schools, as well as over time, as experience

accumulates.

A third desirable feature is that school and teacher quality are allowed to act as either comple-

mentary or substitutable inputs, with the data informing us as to the extent of complementarity.

Such input complementarity creates the possibility of efficiency gains from potential policies that

incentivize a reallocation of teachers to schools.

There is also an empirical motivation for the chosen specification. Using elementary school

data in Florida and North Carolina, Sass et al. (2010) find higher within-school variance in teacher

fixed effect estimates among schools serving high poverty populations relative to those serving low

poverty populations, and conclude that there is greater heterogeneity in teacher quality among high

poverty schools.

I also find evidence of excess variation in teacher-specific average residuals across schools in

the high school context. Specifically, I first calculate average test score residuals (removing the

effects of observable student characteristics) for each school-teacher combination, and take the

variance of these average test score residuals at each school. I then compare the distribution of

these school-specific variances across schools to the distribution that would occur naturally under

random assignment of teachers to schools (holding the number of teachers at each school fixed).

The actual variance in within-school variances of teacher residuals across schools is 2.5 times as

large as that produced by a random allocation of teachers to schools. Further, I also find that such

within-school variance in average residuals across teachers is between 10 and 15 percent larger in

schools whose fraction eligible for free lunch eligibility and fraction minority place them in the

top quartile of high schools in North Carolina.

However, in a linear value-added specification, one cannot tell whether high poverty schools

are actually attracting teachers whose quality is more heterogeneous, or instead whether the same

variance in underlying teacher skill is magnified in importance in a high poverty setting. Dis-

tinguishing between these two hypotheses is critical for determining whether such schools can

be more efficiently improved by policies that alter the school environment versus policies that

facilitate more careful screening of potential teachers. A specification incorporating both school-

specific scaling factors as well as persistent teacher quality allows one to separately identify the
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contributions of actual heterogeneity in teacher skill and sensitivity to teacher quality to the excess

variation in school-specific teacher fixed effect variances.

The North Carolina data I use provides scores from tests based on ten distinct high school

subjects, several of which may be taken in the same school year. Thus, the education production

function must be altered to make it course-specific.

To do this, I allow the functions that map all past inputs and current student, peer, and family

inputs into contributions to test score performance to be specific to the subject being tested, so

that f(∗) becomes f c(∗) and g(∗) becomes gc(∗). School quality and teacher quality inputs are

assumed to be common to all subjects.13 Finally, to minimize the impact of different choices

of scales for exams taken in different subjects, I also standardize each test score relative to the

appropriate course-year-specific state distribution, and re-interpret Yict accordingly. Let Iit−1 =

{Ft−1
i ,At−1

i ,Pt−1
i ,Rt−1

i ,St−1
i } denote the vector of past inputs, and let Iit = {Fit,Ait,Pit}

denote the vector of current family, individual, and peer inputs. We obtain:

(3) Yict = f c(Ii
t−1) + gc(Ii

t) + δs + φst + γs[µr + d(exrt) + νrt] + eict

Even with the above assumptions, estimating the production function would still require one to

observe all relevant current and prior student, family, and peer inputs. Thus, I instead narrow my

focus to the estimation of the parameters most relevant to evaluating the contribution of high school

teacher and school inputs to student inequality: the set of persistent teacher qualities {µr}, the set

of persistent school qualities {δs}, the set of school sensitivities to teacher quality {γs}, and the

profile of teacher growth with experience d(∗). Given this focus, I use a vector of English and math

test scores from 7th and 8th grade and their squares as a proxy for the impact of prior inputs on

student test scores (which I denote Ỹt−1
i ). Similarly, I use a vector of observable student, family,

and classroom characteristics, denoted Xict, as a proxy for current student, family, and peer inputs.

Other research using achievement in multiple subjects has exploited cross-subject student fixed

effects to control for student selection into classrooms (e.g. Clotfelter, Ladd, and Vigdor (2010) or

Xu, Hannaway, and Taylor (2011)). The use of teacher fixed effects and two dimensions of school

13. Most of the resources associated with a school that one expects to substantially impact test scores, such as
principal quality, building facilities, and the safety of the surrounding neighborhoods, do not vary by course. In the
case of teacher quality, to the extent that a teacher’s quality is subject-specific (i.e. better at teaching Algebra 1 than
Algebra 2), we can simply re-interpret our estimates of a teacher’s quality as capturing the teacher’s average ability
to increase test scores across the subjects the teacher teaches over the sample period, weighted by the frequency with
which the teacher actually teaches those subjects.
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fixed effects rendered this approach computationally infeasible. Note, though, that the coefficients

on both past test scores and student and classroom characteristics are subject-specific. This allows

the weight given to an 8th grade math score to be greater for a high school math course than an

English course, thus allowing the pattern of past test scores to reveal comparative advantages of

particular students for particular subjects.14 The impact of using proxies for f c(Iit−1) and gc(Iit)

is discussed further in the next section.

Thus, the specification I estimate is:

Yict = Ỹt−1
i αc +Xictβc + δs + γs[d(exrt) + µr] + εict(4)

where the error term, εict, is composed of:

(5) εict = (f c(Ii
t−1)− Ỹt−1

i αc) + (gc(Ii
t)−Xictβc) + φst + γs(νrt) + eict

III. IDENTIFICATION

As emphasized by Todd and Wolpin (2003) and Meghir and Rivkin (2010), among others,

endogenous choice of inputs by students, parents, and schools represents a formidable obstacle

to identifying the parameters of an education production function. The first potential issue is the

parents’ endogenous choice of school. Suppose that, conditional on observed prior test scores and

observed current student, family, and classroom inputs, knowledge of a student’s school does not

provide further information about a student’s unobserved prior inputs, nor his current unobserved

individual and family inputs:

Assumption 1: Conditional Mean Independence

of Students’ Unobserved Inputs and School Identity

(6) E[f c(Iit−1)+gc(Iit)|1(s(i, t) = s′); Ỹt−1
i ,Xict] = E[f c(Ii

t−1)+gc(Ii
t)|Ỹt−1

i ,Xict] ∀ s′ ∈ S

14. One possible concern is that the control set of demographics and past math and reading test scores may do a
poor job in predicting student preparation and talent in a particular subject. In practice, the standard deviation in the
regression index of observables Xictβc + Ỹ t−1

i αc is between .6 and .78 of a test score standard deviation across all
10 subjects. Overall, past test scores account for 57% of the variation in high school achievement, which suggests that
such scores are capturing the bulk of persistent student ability.
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Under Assumption 1, excluding prior student inputs will not bias estimates of persistent school

quality (δs).

Assumption 1 would hold, for example, if past test scores were a sufficient statistic for the past

inputs that are relevant for current test score performance and current inputs depended only on

a student’s post-graduation plans, which I observe in Xict. However, to the extent that students

with unobservably superior prior inputs systematically sort into particular schools, the values of δ

associated with these schools will also reflect the impact of these inputs. In particular, in the likely

scenario that there is some degree of positive assortative matching between unobservably superior

students and superior schools, the estimates of the variance in school quality presented below will

be overstated, and can be interpreted as upper bounds. Importantly, however, since γs and µr are

identified purely from comparisons among teachers while they are teaching at the same school,

violation of this condition will not bias estimates of these parameters. Most of the focus will thus

be on estimates of teacher quality and school sensitivity, although estimates of δs will be reported

and discussed at various points.

The second potential endogeneity problem is that students may not be randomly assigned to

teachers within schools, so that the average test scores of a given teacher’s students may partly

reflect deviations in student inputs from school averages.15 In order to recover unbiased estimates

of persistent teacher quality, µr, we need the identity of a student’s teacher to provide no further in-

formation about the student’s unobservable current or prior inputs, given the information contained

in observable prior test scores, observable current inputs, and the school the student attends:

Assumption 2: Conditional Mean Independence of

Students’ Unobserved Inputs and Teacher Identity

E[f c(Ii
t−1) + gc(Ii

t)|1(r(i, t) = r′), 1(s(i, t) = s′), Ỹt−1
i ,Xict] =

E[f c(Ii
t−1) + gc(Ii

t)|1(s(i, t) = s′), Ỹt−1
i ,Xict] ∀ r′ ∈ R, s′ ∈ S(7)

At the high school level, crafting students’ schedules is an onerous task done by schedule-making

computer programs, making it difficult for principals to assign individual students to teachers, and

for students to target particular teachers. However, principals still choose which difficulty levels

to assign to which teachers, and students may be choosing whether to take an honors class based

15. Rothstein (2010), in particular, has argued that this problem is severe at lower levels of schooling.
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on private information about deviations in their own expected inputs from past levels. Thus, the

validity of Assumption 2 depends critically on the extent to which the sorting of students into levels

is captured by prior test scores and observable current inputs.

While the full set of observed inputs is laid out when I discuss the data in Section IV, it is

worth noting here that I include in Xict the average prior test scores and average demographic

characteristics of the other students in student i’s class. Since these measures are likely to serve as

an effective proxy for the difficulty level of a class, conditional random assignment of students to

teachers is a reasonable assumption at the high school level. Also, Jackson (2012), using the same

high school data from North Carolina, shows that a teacher’s out-of-sample value-added estimate,

computed relative to other teachers in the same track, is uncorrelated with a predictive index of

the observable characteristics of their students in a given year. The utter lack of selection on

observable characteristics casts doubt on the plausibility of substantial teacher-student matching

based on unobservable characteristics, given that observable characteristics explain the majority of

the variation in student test scores.

Moreover, non-random assignment of students to teachers, even conditional on student and peer

observables, need not contaminate estimates of the between-school variance in teacher quality.

Suppose, for example, that students are assigned to teachers in such a manner so that teacher

quality is positively correlated with the unobserved component of their students’ other inputs.

Then the quality of a school’s relatively effective teachers will be overestimated relative to the

quality of the relatively ineffective teachers, and the estimated variance in teacher quality within

schools will be biased upwards. However, note that the average bias in µr among all teachers at

a school must be zero by construction, since school averages of unobserved student-level inputs

will be captured by the school-specific intercept, δs, and every student must have been taught by

some teacher. Consequently, if transfer decisions are unrelated to the bias in transferring teachers’

quality estimates,16 then if there are enough transferrers connecting a school to the network, the

average bias among transferring teachers will tend to zero, and the estimate of the average quality

of the schools’ teachers will be unbiased.

Another potential concern, highlighted by Jackson (2012), is that teacher assignments may be

correlated with track-specific treatments, such as an accelerated curriculum, thereby creating an

omitted variables problem. Such track effects may inflate my estimates of within-school teacher

quality. However, from the perspective of characterizing unequal access to school and teacher

16. The two would be related, for example, if teachers who consistently received unobservably bad students at a
school became disgruntled and more inclined to transfer.

12



inputs for already disadvantaged students, distinguishing between track effects and teacher quality

is less critical, since both would be rectifiable sources of inequality of opportunity beyond the

students’ control that might contribute to test score disparities. Furthermore, as with non-random

assignment of students to teachers, since δs will capture the average effectiveness of tracks at a

school, any bias from teaching in less/more effective tracks within a school will average to zero

across all the teachers at each school. Thus, unless teachers’ transfer choices are correlated with

track treatment effects, such track effects need not bias estimates of average teacher quality.

A third potential endogeneity problem is also ruled out by Assumption 2. Even if students are

conditionally randomly assigned to teachers, students (and parents) may respond to the quality

of teaching they receive by adjusting their own current inputs. For example, a student saddled

with an ineffective teacher may be more likely to study the textbook harder or pay for tutoring

services. Indeed, Pop-Eleches and Urquiola (2011) document that parental effort toward student

achievement in Romania declines when a student obtains access to a better school environment.

If persistent teacher quality (µr) entered the production function linearly, such input compensa-

tion would cause estimates of teacher quality to be muted in magnitude, and the variance in teacher

quality to be underestimated.17 In contrast, in the non-linear model analyzed here, to the extent that

such input compensation is common to students from the same school, it will instead be reflected

in a smaller estimate of the school’s sensitivity to teacher quality, γs. Thus, another advantage

of the chosen specification is that estimates of teacher quality, and by extension, estimates of the

between-school variance in teacher quality, are robust to variation in the extent of input compen-

sation across schools. To the extent that input compensation is beyond a school’s control, one can

simply reinterpret γs to be the sensitivity of the school’s students to teacher quality given the kinds

of students (and parents) that attend the school. Note, though, that the estimated variance in teacher

quality will still reflect variation in the ex post impact of teachers after the amount of compensation

that takes place at the median school, rather than the variation that would exist in the absence of

any input compensation.

However, we may have less reason to be concerned that parental inputs compensate for teacher

quality at the high school level than at the elementary and middle school levels. For example, if

a first grade teacher fails to teach a child to read, the child’s parents can probably teach the child

to read at home. In contrast, most parents are likely to be far less comfortable filling in gaps in,

17. The assumption of additive separability of teacher inputs from student inputs implies that the two are substitutes.
However, if in fact teacher inputs and student inputs are complements, students might increase their inputs in response
to a particularly effective teacher, and the bias would be reversed.
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say, their child’s physics knowledge. In this case, their only option would be to pay for costly

professional tutoring.

A fourth potential endogeneity problem stems from the possibility that teachers choose the

effort they make or the content they teach. I do not explicitly model teacher effort. Instead, I

assume that teachers do not systematically adjust effort in response to school, student, or peer

inputs. With this assumption, persistent differences in effort across teachers will simply represent

an important component of persistent quality µr, and idiosyncratic deviations in effort from a

teacher’s norm will be captured by νrt. I also assume that teachers do not systematically adjust

effort in response to school, student, or peer inputs. A related concern is that persistent differences

in teacher performance may be reflecting the extent to which teachers adhere to the state curriculum

rather than differences in ability to foster learning. Fortunately, several aspects of the context

surrounding the data help allay these fears.18

A number of existing articles have already shown that assumptions like those made above are

enough to identify and consistently estimate the distribution of teacher quality within schools.19

Comparing the quality of teaching across schools, however, requires extra assumptions and infor-

mation. Kramarz, Machin, and Ouazad (2008) decompose test scores of English primary school

students into school and student components using a two-way fixed effects specification. They

prove that distributions of school and student fixed effects can each be identified up to scale if two

conditions are met. The first is that schools and student transfers form a connected graph (with

schools as vertices and transferring students as edges). The second is that a student’s choice to

transfer to a different school is not correlated with changes in unobserved inputs.

Consider a special case of the model above in which γs = 1 ∀ s. Then the model in (4)

collapses to a version of Kramarz, Machin and Ouazad (2008) in which teachers take the place

of students. Hence, in addition to Assumptions 1 and 2, identification requires that (1) schools

and teacher transfers form a connected graph, meaning that any two schools in the network can be

linked by some chain of transferring teachers, and (2) a teacher’s choice to transfer to a different

school is not correlated with any error component (i.e. it does not predict the level of their student’s

18. First, in recent years No Child Left Behind legislation has put pressure on principals to ensure that teachers
teach the standard curriculum, since schools that fail to meet state standards are subject to sanctions and possible
closure. Second, the North Carolina end-of-course exam scores I use as outcome measures must comprise 25% of
the student’s year-end grade in a given subject, so that parents are likely to complain about teachers that ignore the
standard curriculum. Finally, during the sample period in North Carolina, teacher bonuses of up to $1,500 were linked
to average test scores of the students in the school at which they teach. Thus, teachers are under considerable pressure
to teach the tested material.

19. e.g. Hanushek et al. (2005); Kane and Staiger (2008)
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unobservable inputs or deviations in school or teacher performance from their long-run averages).

The sufficient mobility condition is easily satisfied for a large network of schools in the data.

Discussion of the connectedness of the schools takes place in Section IV. As I discuss shortly, the

extent of teacher mobility is important for the precision of parameter estimates.

We can state the exogenous mobility assumption more formally as:

Assumption 3: Exogenous Mobility

E[εict|s(i, t) = s′, r(i, t) = r′; r′ transferred to s′ at some t′ <= t] = 0

E[εict|s(i, t) = s′, r(i, t) = r′; r′ transferred from s′ at some t′ > t] = 0(8)

where εict is the composite error term defined in (5).

The intuition behind the need for exogenous mobility is as follows. In the context where schools

are equally sensitive to teacher quality, a teacher’s persistent quality, µr, can be identified rela-

tive to the other teachers at their school by comparing the average residuals of his/her students’

test scores with those of the other teachers, after removing the predicted impact of student- and

classroom-level inputs.20 If a teacher has taught at multiple schools, then he/she can be placed in

the distribution of within-school teacher quality in both schools. With only one linking teacher,

we would need to assume that his/her ability to increase test scores is the same across the two

schools in order to infer relative school quality from his/her students’ relative performance at the

two schools. Once relative school qualities are known, we can shift the within-school distributions

of average student residuals appropriately to place the performance of teachers from all schools in

a neutral school environment. However, with many linking teachers, relative school quality is iden-

tified by differences in the average performance of transferring teachers across the two schools.

Thus, Assumption 3 only requires that transferring teachers do not systematically perform bet-

ter at one of the schools, so that the difference in the average performance of students taught by

transferring teachers still identifies relative school quality.

Surprisingly, identification of the non-linear model in equation (4), which includes school-

specific sensitivity to teacher quality, does not require much more information. As long as teachers

tend to naturally increase their quality as they gain experience, we have an extra source of within-

teacher variation that informs us about school sensitivity to teacher quality. Thus, the set of school

20. This assumes that all teachers have taught a large number of students, so that sampling error from measurement
error and average levels of unobserved student-level inputs is minimal.
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sensitivity parameters {γs} can be identified by variation across schools in how quickly test scores

increase with teacher experience, before even considering teachers who transfer. In practice, when

there are more transferrers than the minimum required to construct one connected graph, the γ pa-

rameters will also be identified from variation across schools in the performance of higher quality

transferrers relative to lower quality transferrers, independently of experience. For example, if two

teachers both transfer from the same school A to a common second school B, and the difference

between the two teachers’ average test score residuals is larger at school B than at school A, this

will contribute to a relatively larger estimated γ value at school B. Thus, with school-specific sensi-

tivity to teacher quality, the expected difference in student performance among a set of transferring

teachers at two different schools will now reflect differences in sensitivity to the quality of these

transferring teachers in addition to differences in school quality. A formal proof of identification,

given the assumptions and conditions above, is provided in Supplementary Section I.

Note, though, that several obvious forms of systematic teacher mobility do not constitute vio-

lations of Assumption 3. These include systematic transfer of teachers to better schools, increased

probability of transfer among inferior teachers, or even systematic transfer of effective teachers to

schools more sensitive to teacher quality. This is because the average performance among students

taught by transferring teachers at each school under such mechanisms is predictable given knowl-

edge of the teacher and school. Knowing that the teacher who teaches a given student transferred

to the school does not provide any further information about any component of the composite error

in these contexts.

There are, however, several mechanisms by which the exogenous mobility assumption could be

violated. Substituting the components in (5) for εict in (8), we observe that a systematic relationship

between a teacher’s transfer decision and any of these components would violate Assumption 3. In

Supplementary Section VII, I discuss an array of mechanisms, and I devise and perform tests for

the two that are most plausible.

The first mechanism, related to φst, is that teachers systematically transfer toward or away

from schools that are about to get better or worse, relative to the school’s average quality over the

sample period. This might occur, for example, if teachers follow a particularly effective principal

when he or she moves from school to school. I test for this mechanism by estimating a model

with school-year fixed effects and observing whether schools are disproportionately likely to have

their relatively bad years after transferrers leave or their relatively good years after new transferrers

arrive. I do not find evidence that teachers are fleeing declining schools or are flocking to improving
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schools.

The second mechanism, related to the findings of Jackson (2010), is that teachers may systemat-

ically transfer toward schools where they are idiosyncratically well matched. The model presented

in Section II does not allow for school-teacher match effects beyond the complementarity captured

by γsµr. However, a likelihood ratio test rejects the hypothesis that school-wide sensitivity to

teacher quality can fully account for teacher-school match effects, suggesting this scenario could

be a concern. For example, a teacher who is better at teaching Algebra 1 than Algebra 2 may move

to a school where she can teach Algebra 1 full time, or a teacher who is adept at using classroom

technology may move to a school that provides high-tech classrooms. However, I test for move-

ment toward better matches using a subset of schools exhibiting balanced mobility (offsetting flows

of teacher transfers in and out), where movement toward better matches is unlikely to bias param-

eter estimates even if it occurs (see Supplementary Section VII for further intuition). I find that

such targeted mobility is statistically insignificant, and not of sufficient magnitude to substantially

bias estimates in schools that do exhibit positive or negative net flows of teacher transfers.

The proof in Supplementary Section I makes clear that d(∗), {µr}, {γs}, and {δs} are only

identified up to scale. Hence, I normalize the experience profile so that d(0) = 0. I normalize γs

so that the median across schools is one; each school’s value of γs captures the school’s sensitivity

as a fraction of the sensitivity at the median school. µr is normalized so that it captures teacher r’s

ability to increase test scores relative to the average teacher in the sample at a school of median

sensitivity. δs is normalized so that it captures the expected increase in test scores from attending

school s relative to a school with average δ, under the assumption that the global average of true

teaching quality is 0. Supplementary Section II discusses normalization and interpretation of pa-

rameter estimates in more detail, including how the normalization is implemented given a set of

raw parameter estimates.

IV. DATA

The data, provided by the North Carolina Education Research Data Center, consist of the stan-

dardized test scores of all public high school students in North Carolina from 1997-2006 in up to

ten subjects, along with a host of student, teacher, and school characteristics. During the sample

period, North Carolina offered a standard curriculum with mandatory end-of-course tests for the

following subjects: Biology, English 1, U.S. History, Econ/Law/Politics, and Algebra 1, Algebra
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2, Geometry, Physics, Physical Science, and Chemistry.21

The data contain a large number of observable current student22 and peer23 inputs that together

comprise Xict. Observed prior inputs, Ỹt−1
i , include the student’s test scores in 7th and 8th grade

math and English (standardized by subject-year), along with squares of these test scores, and in-

dicators for missing test scores. Observations were dropped from the sample if fewer than two

prior test scores existed. Recall from above that the coefficient associated with each characteristic

is allowed to vary with the subject being tested, so that, for example, the impact of a student’s 8th

grade math test score is allowed to depend on whether the subject currently tested is Algebra 1 or

English 1.

Teacher experience indicators are created for 6 cells: first year teacher, second year teacher,

third year teacher, years 4-6, years 7-12, and more than 12 years of experience. d(x) is assumed to

equal d(x′) for x, x′ in the same experience cell. I limited the experience profile to six cells because

constructing the design matrix for the school-teacher-experience cell combinations in the first stage

of estimation (see Supplementary Section IV) is computationally intensive, and increases rapidly

in the number of cells.

My method of estimation requires that student test scores be matched to the teacher who taught

the class. Unfortunately, the raw data do not provide an exact match between a test score and

the identity of the teacher that taught the class. However, unique classrooms of test scores can

be constructed in the test score level data, and a list of the classes taught by each teacher in each

semester is available in the teacher level data. Thus, I use a fuzzy matching algorithm to match

each teacher-class to a student-class. Since the grade level, race, and gender of each student in the

student-class is observed, grade totals and race-gender cell totals can be constructed for the classes

in the student-level data and compared to the corresponding grade totals and race-gender cell to-

21. Tests in Physics, Geometry, Chemistry, Physical Science, and Algebra 2 were not introduced until 1999. Also,
Econ/Law/Politics was discontinued in 2004, and replaced by Civics and Economics in 2006. US History was not
tested between 2004 and 2005.

22. Observable student inputs include the student’s race and gender, indicators for parents’ education categories,
indicators for learning disabilities in writing, math, and reading, limited English proficiency, whether the student is
gifted in math or English, and indicators for grade level (9-12), whether the student is old for his grade, and whether
the student is taking the course a year later than his peers at the school. They also include indicators for whether the
student intends to attend community college, attend four-year college, or work after high school, as well as indicators
for participation in a sport, vocational club, academic club, service club, or arts club. I also allow for race matching
effects between teacher and student, in acknowledgement of the findings of Hanushek et al. (2005). This is the one
exception to the general rule that the sensitivity of student performance to student characteristics is not allowed to
depend on teacher characteristics.

23. Observable peer/classroom inputs consist of class size, the fraction of the class in each race-gender cell, the
fraction of the class in each grade level, the number of gifted students in the class, and class averages of 7th and 8th
grade math and reading test scores and their squares.
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tals of the classes in the teacher-level data.24 Test scores from student-level classes whose race,

gender, and grade distributions do not closely approximate any teacher-level class in that course in

that school are excluded from the analysis that follows. Supplementary Section III describes the

implementation of the fuzzy matching algorithm in detail.

The dataset contains approximately 6 million test scores from over a million students, with

22,000 teachers, in 375 public high schools. Recall that identification requires a connected graph

of schools and transferring teachers. Furthermore, estimates are more precise if there are many

transferring teachers and if the number of students per teacher is large.

Fortunately, the long panel means that there are nearly 3,000 teacher transfers, and teachers

have often taught hundreds of students. To be included in the sample, I required teachers to have

taught at least 20 students. When I impose the restriction that the network be 3-edge connected,

so that any two schools can be connected using three distinct chains of transfers that do not share

any links,25 329 schools remain. In fact, the majority of the 329 schools are far better connected:

217 of them are connected to each other by at least 10 transfers. Figure Ia shows the distribution

across schools of the number of connecting transfers. Figure Ib shows the distribution of exams

administered across teachers in the sample. Figure Ic shows the number of students taught by each

transferring teacher at the school at which he/she taught fewer students. The latter figure illustrates

that while some teachers have only taught one class at a second school, many others have taught at

least 100 students at multiple schools.26

After dropping students with missing test scores, teachers who taught at unconnected schools,

and test scores from classes that were unmatchable, the data still contain 4,016,343 test scores from

855,238 students and 18,498 teachers. The test scores are scaled scores that I re-standardized to

have zero mean and unit variance within each subject-year combination.27

24. Students seem to skip ahead or fall behind their grade in one subject fairly often, so that students representing
different grades are often observed in the same class.

25. A transferring teacher is defined for these purposes as one who has taught at least 15 students at two different
schools.

26. About half of the teacher transfers in the dataset are among schools within the same district. Most districts
have a formal procedure by which teachers can request a transfer to a vacancy at another school within the district, so
that some of the within-district moves are voluntary. However, superintendents generally reserve the right to trigger
involuntary transfers in order to maintain a balance of experience across schools. Unfortunately, the data do not
indicate whether a transfer was voluntary or not. Transfers across districts, like most employer changes, require the
mutual agreement of the teacher and the new district.

27. Meghir and Rivkin (2010) have noted that if monotonic transformations of test scores convey the same infor-
mation about student learning, a particular form of the education production function may be specific to an arbitrarily
chosen test score scale. This is of potential concern in this context, since the method relies upon pooling tests from
different subjects and years. However, most widely-used standardized tests have undergone considerable field-testing
and analysis using item response theory to ensure that the final test instrument properly evaluates mastery of the rel-
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V. ESTIMATION

From Section II, the model to be estimated is:

Yict = Ỹi
t−1

αc +Xictβc + δs + γs[d(exrt) + µr] + εict(9)

The standard estimation technique in the literature is the Empirical Bayes method advocated by

McCaffrey et al. (2009) and Kane and Staiger (2008). By treating school and teacher quality as

random effects, this technique only requires the estimation of the underlying joint distribution of

teacher and school quality, and imposes multivariate normality to construct estimates of the poste-

rior mean belief regarding the quality of each individual teacher and school. However, calculation

of standard errors of the estimates of average teacher quality among the specific set of teachers

that a particular student experienced (necessary for the analysis below) requires knowledge of the

covariance matrix of estimation errors among the particular members of this set. Similarly, testing

whether student performance in high-poverty schools is as sensitive to teacher quality as student

performance in low-poverty schools requires knowledge of the full covariance matrix of sampling

errors involving these schools, since sampling error will generally be correlated across schools.

Thus, I instead estimate equation (9) directly via non-linear least squares. Suppose that there

are N student test scores associated with R teachers in S schools. In addition, there are K student-

and classroom-level covariates and L prior test scores associated with each dependent variable test

score, as well as J teacher experience cells. Then we need to minimize N squared deviations over

K + L+ 2S +R + J parameters. Since students’ test scores partly reflect unobserved inputs and

measurement error, a large number of student test scores are needed for each teacher in order to

precisely estimate his/her quality. Also, a large number of schools is desirable in order to get a

broad sense of how teaching quality is distributed across the state. Finally, a large number of trans-

ferring teachers is necessary to distinguish school quality from average teacher quality, and a large

number of teachers at each school is necessary to get an accurate picture of the average teacher

evant content and effectively differentiates between students throughout the distribution of learning. Consequently,
assuming that all such tests, once standardized, share a common relationship with teacher and school inputs is not
unreasonable. Thus, one way to interpret the estimates is that they measure the impacts of teachers or schools on
standardized z-scores from field-tested exams designed for the whole range of student abilities, and would be general
to any test fitting this description. Applying convex and concave monotonic transformations of test scores and re-
estimating has little impact on the results below, except in cases where such transformations introduce floor or ceiling
effects. Supplementary Figures 1-3, which plot histograms for the tests associated with each subject-year, show that
the tests used in this analysis are not plagued by floor effects nor ceiling effects. See Koedel (2010) for an analysis of
the impact of floor and ceiling effects on value-added estimates.
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quality at each school. Thus, estimating the model is a daunting computational task: I employ

over four million test scores and estimate nearly twenty thousand parameters.28 Fortunately, there

are a few shortcuts that ease the computational burden considerably. Supplementary Section IV

describes in detail the methods used to estimate the model.

Recall from the proof in Supplementary Section I that identification of the quality of non-

transferring teachers fails at schools that are perfectly insensitive to teacher quality. Consequently,

estimates of teacher quality become extremely unstable when estimated sensitivity to teacher qual-

ity is close to 0. Thus, I constrain each school to be positive and at least 1/4 as sensitive to teacher

quality as the median school (γs ≥ .25).29

Analytical asymptotic standard errors are calculated for all parameters. Standard errors are

clustered at the teacher-year and school-year levels, with the variance of the teacher-year and

school-year components restricted to be common to all teacher-years and school-years, respec-

tively. In addition, the variance of the test-score level error component (eict) is assumed to be

homoskedastic. In order to make estimation of the variance-covariance matrix computationally

feasible, the calculation needed to be broken down into several pieces. Supplementary Section V

describes the details of standard error computation.

Given a limited number of teachers and a limited number of students per teacher, the variance

in the estimated distribution of persistent teacher quality, V ar(µ̂), will reflect both true variation

in µ and variation due to test score measurement error and the other unobserved components that

make up εict. To distill the true variance in teacher quality, I follow the approach of Aaronson,

Barrow, and Sander (2007). I first use the distribution of fixed effect standard errors to estimate the

error variance. Then, I subtract the error variance from the estimated fixed effect variance to obtain

an estimate of the true variance in µr. I use the same technique to estimate the true variance in δs,

28. Note that I cannot simply estimate the production function separately for each subject, since each transfer-
ring teacher, regardless of subject, is providing valuable information about school quality. Allowing subject-specific
school quality would require separate connected graphs of transfers across schools among each subject’s pool of teach-
ers. While this condition could be technically satisfied for most subjects, results from such a specification would be
exceedingly unreliable.

29. A negative sensitivity would imply that the teachers who reduce the test scores the most are the teachers of
highest true quality. A small or negative estimated sensitivity can be obtained if the students transferring teachers who
were relatively more effective at other schools perform less well than the students of the transferring teachers who
were relatively less effective at other schools. At schools with small samples of transferring teachers, test score mea-
surement error, teacher-year error components, and idiosyncratic school-teacher match components need not wash out.
Relaxing this constraint does not substantially alter the shape of the sensitivity distribution, but a handful of schools
do exhibit small estimated sensitivities, and a few exhibit negative estimated sensitivities. Such small and negative
sensitivities generally lead to implausibly large teacher quality estimates for non-transferring teachers, revealing that
such sensitivities cannot possibly be reflecting true insensitivity or negative sensitivity to quality. However, a few such
outliers can skew the measurement error adjustment substantially, which motivates imposing the parameter constraints.
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γs, and school average teacher quality µs. Supplementary Section VI describes the procedure in

detail.

VI. RESULTS

VI.A. Variance Decomposition

At first glance, differences in average teacher quality and teacher experience across schools

seem to have the potential to create considerable disparities in test scores between schools. Table

I shows that average teacher credentials differ substantially across schools. A school at the 5th

percentile of the average teacher experience distribution has teachers with an average of eight fewer

years of experience than a school at the 95th percentile. For fraction of teachers with Master’s

degrees, the 95th-5th quantile difference is .34. Also, substantial performance disparities across

schools do exist that require explanation. Table II, which contains a decomposition of the variance

in student test scores into within-school and between-school components, indicates that 8.7% of

the test score variance is between schools (Row 6, Column 3). The difference in average test scores

between a school at the 5th percentile and the 95th percentile is nearly a full student-level standard

deviation (32nd percentile vs. 68th percentile of the test score distribution).

A closer look at Table II reveals that school quality and average teacher quality in fact have

very limited scope to explain average test score differences across schools. Rows 2 and 5 show

that the lion’s share (92%) of the total variance in test scores is due to differences in observable and

unobservable student and classroom characteristics and test score measurement error, while Row 7

shows that observable differences in student and classroom characteristics explain three-quarters of

the between-school variance. Row 3 indicates that unexplained variation between school-teacher-

experience cells accounts for 5 percent of the total variance, suggesting that there is still scope for

teacher quality to matter. However, Row 7, labeled “Total School Quality”, shows that only 0.9

percent of the total variance in student test scores is potentially explainable by differences across

schools in school quality, school sensitivity to teacher quality, average teacher quality, and average

teacher experience.

While this may seem shockingly small, two points are worth noting. First, considerable dif-

ferences may exist in the quality of the elementary and middle schools attended by students, but

these differences will be reflected in differences in average prior test scores α̃. High school may
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be too late to close test score gaps built up through years of unequal family, school, and teacher

inputs. Second, comparisons of variances exacerbate differences in the relative importance of var-

ious inputs, since variances are measured in units comparable in magnitude to squares of student

test scores. Even though differences in δs + γs(µs + d(ex)s) across schools explain only 1 percent

of the variance, moving from the 5th percentile school to the 95th percentile school in this distri-

bution increases test scores by .31 student-level standard deviations, enough to move an average

student from the 44th percentile to the 56th percentile.

VI.B. Teacher Experience

The estimated values of the teacher experience profile, ˆd(ex), are presented in Table III. First-

year teachers are .040 student-level standard deviations worse than second-year teachers, .064

worse than third year teachers, .088 worse than teachers in their fourth through sixth years, .116

worse than teachers in their seventh through twelfth years, and .145 worse than teachers with

more than twelve years of experience. This experience profile matches up fairly well with existing

estimates from the literature (see Rivkin et al. [2005] or Clotfelter, Ladd, and Vigdor [2007]).

These numbers, combined with the large differences in average teacher experience across

schools displayed in Row 4 of Table I, give the false impression that variation in average teacher

experience across schools has the potential to explain the remaining between school variation in

student test scores. However, the teacher experience differentials across schools are driven in part

by differences in the fraction of extremely experienced teachers, for whom the extra few years of

experience have little marginal effect on their performance. To account for this, I calculate the

average value of effective experience for each school, d(ex)s, weighting each teacher-year within

the school by the number of students the teacher taught at that school in that year. Panel B of Table

III displays various quantiles of the distribution of d(ex)s. The standard deviation is just .009, and

even at the school whose value of d(ex)s puts it at the 1st quantile among schools, the average

effective experience of teachers only decreases the average student test score by .030 student level

standard deviations, relative to the mean school. This corresponds to a move from the 50th to

the 49th percentile for an average student. Simply put, while the first few years of experience do

have a significant impact on teacher effectiveness, differences in average teacher experience do

not explain the test score gaps we observe across schools in North Carolina. These results may

not be surprising when one considers that many school districts have explicit policies allowing

involuntary transfers of teachers when one school has too few experienced teachers.
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VI.C. The True Variance of Teacher Quality, School Quality, and School Sen-

sitivity to Teacher Quality

The first four columns of Table IV display the raw and true variances of the key parameters of

the model for the baseline specification. While the standard deviation of µ̂r is .307, correcting for

sampling error leaves an estimate of the true standard deviation in teacher quality of .174 student-

level standard deviations. An average student who receives a teacher at the 75th percentile of

teacher quality can expect to move from the 50th percentile to the 55th percentile, while one who

receives a teacher at the 95th percentile can expect to move up to the 62nd percentile, assuming

test scores are distributed normally.30 This is substantial, and generally in line with most estimates

found in the literature at the elementary and middle school level.31 By and large, the estimated

true standard deviation of teacher quality is fairly consistent across subjects, with the exception of

English. I find that the standard deviation of teacher quality is 0 in English, while it is generally

between .15 and .25 in the other nine subjects. Specifically, the estimated true standard deviation

of teacher quality is .19 in Algebra 1, .22 in Algebra 2, .16 in Biology, .24 in Chemistry, .15 in

Econ/Law/Politics, 0 in English, .20 in Geometry, .19 in Physics, .25 in Physical Science, and .19

in U.S. History. Note, however, that I cannot distinguish the true variation in pedogogical skill from

the ability of the test to detect such skill. Thus, the results for English may not reflect homogeneity

of English teachers, but instead a test that struggles to isolate English learning in 9th grade from

learning that took place in previous grades. The estimates of the true variation in teacher quality

in Algebra 1 and English mirror those of Jackson (2012) using the same data, despite a different

estimation methodology.

I calculate average teacher quality, denoted µ̂s, by weighting each teacher by the number of stu-

dents he/she taught at the school. Applying an analogous measurement error correction, I obtain an

estimate of the true between-school standard deviation of teacher quality of .061.32 The estimate

indicates that attending a school whose average teacher quality is in the 75th (95th) percentile

moves an average student from the 50th percentile to the 52th (54th) percentile of the state test

score distribution. So while average teacher quality does not vary dramatically across schools, at-

30. This assumption is borne out by plots of the data. See Supplementary Figures 1-3
31. Hanushek et al. (2005), for example, find a within-school standard deviation of .22 test score standard devia-

tions. For Kane and Staiger (2008), the standard deviation for English teachers is .17, while the standard deviation for
math teachers is .22.

32. I use the delta method to account for correlation in sampling error in µ̂r across teachers in the same school when
calculating sd(µs).
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tending a school with terrible teachers can still put a student at a meaningful disadvantage. Clearly,

though, eliminating differences in average teacher quality across schools would not come close to

eliminating test score gaps across schools. Figures II and III display the histograms of estimates of

teacher quality (µ̂r) and school average teacher quality (µ̂s), respectively, along with the underlying

true densities of µr and µs, assuming a normal distribution.

Figure IV displays the histogram of estimates of school sensitivity to teacher quality, (γ̂s), as

well as the underlying true density of γs, obtained by correcting the variance in the estimates

for sampling error and assuming a log-normal distribution. Considerable variation in γs exists:

a school whose sensitivity to teacher quality is at the 5th percentile of the true distribution of

school sensitivity is expected to be about .47 times as sensitive to teacher quality as the median

school, while one whose sensitivity is at the 95th percentile is expected to be about 2.11 times as

sensitive as the median school. A likelihood ratio test overwhelming rejects the restriction that γs =

1 ∀ s. In Supplementary Section VII, I examine the predicted impact of implementing the efficient

allocation of teachers to schools, in which the most sensitive schools receive the best teachers.

I find that the efficient allocation increases the mean test score by .094 student-level standard

deviations, and reduces the standard deviation in test scores by 4.6%. Furthermore, the average test

score among students in the bottom 10% of a regression index of student background (Xitβ+ Ỹiα)

is .175 test score standard deviations larger under the efficient allocation than under the status quo

allocation. These counterfactual estimates suggest that while school-teacher complementarity is

strong enough to be meaningful, it is certainly not strong enough to make efficient use of teacher

quality a policy priority. However, one may be comforted that policies that attempt to reallocate

teacher talent for the sake of educational equality (such as bonuses for effective teachers who teach

in poorer school districts) would be likely to have the side effect of increasing average test scores.

Figure V displays the histogram of school quality estimates, δ̂s, alongside a plot of the under-

lying true distribution of school quality, δs, under a normality assumption. The estimated “true”

standard deviation in δs is .112. Recall that consistency of δs requires Assumption 1, which states

that there are no unobserved student inputs that cluster at the school level. Under this assumption,

moving from a school at the 50th percentile of the δs distribution to the 75th (95th) percentile

would increase an average student’s expected test score from the 50th percentile to the 53rd (57th)

percentile, all else equal.

Columns 5-8 display results form a specification in which each school is equally sensitive to
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teacher quality: γs = 1. This linear specification represents the standard in the literature.33 Given

the large estimated variance in γs in the baseline model, the extent to which the standard deviations

in µr (.174 vs. .172), µs (.061 vs. .073), and δs (.112 vs. .090) in the restricted model mirror

those in the baseline model is somewhat surprising. Thus, any differences in the magnitude of

teacher quality estimates between this and other analyses do not seem to be driven primarily by the

non-linear specification employed here, but rather by the different samples of students and teachers

(high schools versus primary/middle schools), and standardized test designs (course-specific versus

general math and reading).

VII. STUDENT-LEVEL VARIANCE IN AVERAGE TEACHER

QUALITY

While the results indicate that differences in average teacher quality across schools are modest,

the sizable within-school variance in teacher quality may still contribute substantially to inequality

if some students get consistently poor teachers in course after course, relative to their school’s

average. This could be the result of pure bad luck, but could also occur systematically if students

are choosing course tracks and the best teachers within a school tend to be assigned to the honors

track.34 On the other hand, if each student gets taught by offsetting combinations of good and

bad teachers, even a substantial amount of variation in teacher quality at a school need not lead to

sizable differences across students in the quality of teaching they receive. To examine the variation

in student-level teaching quality within schools, I first calculate the average estimated teacher

quality across courses for each student who took tests in five different courses, relative to the

overall average teacher quality at the student’s school. I denote this measure by µ̂i.35 Using the

delta method to calculate standard errors for each student’s average teacher quality, σµi , I can

estimate the variance in student-level teacher quality as:

V ar(µi) = V ar(µ̂i)− (1/I)
∑
i

(σµi )
2.(10)

33. See, for example, Aaronson, Barrow, and Sander (2007) or Boyd et al. (2007).
34. Note that such non-random assignment of students to teachers need not bias the estimates of teacher quality if

the students assigned to the best teachers are predictably superior based on prior test scores and the average prior test
scores of those in their classes.

35. The results are similar if I condition on six or seven tests.
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Among students who took five tests, a one standard deviation increase in average teacher quality

(relative to the overall school average) corresponds to an increase in average teacher quality of .062.

In other words, a student whose average teacher is at the 10th (90th) percentile of the student-level

average teacher quality distribution will have his test scores in each course reduced (increased)

by an average of .078 standard deviations, solely by virtue of the teachers he was assigned at his

school. This is enough to move an average student from the 50th to the 47th (53rd) test score

percentile. Thus, assignment of teachers to students within schools contributes about as much to

the test-score variation across students as does variation in average teacher quality across schools.

However, to the extent that this variation in student-level teacher quality is attributable to simple

good and bad luck, it seems difficult to remedy. Thus, I also estimate what the student-level

variance in teacher quality would be if students were randomly assigned to their teachers, subject

to the important constraint that all students have to take each subject. After all, in the extreme case

of a small school with only one biology teacher, one chemistry teacher, and one physics teacher,

there may be considerable variation in the quality of science instruction across these teachers, but

each student at this school will have the same three science teachers.36

For each student I construct a set of feasible paths of teachers that the student could have experi-

enced, given the sets of teachers that were teaching the subjects the student took when he took them

at his school. Then, I randomly select a path of teachers for each student from these student-specific

sets of feasible paths, and calculate the variance in average simulated within-school teacher quality

across students. After repeating this simulation 100 times and averaging across simulated samples,

I find that the across-student standard deviation in teacher quality under random assignment is .066

test score standard deviations.37 Thus, within-school variation in the average teacher quality expe-

36. Note that subject-specific means were subtracted from estimated school-teacher-experience cell effects prior to
the second stage of estimation, so that the average teacher in each subject has an estimated quality of zero. While it
is possible that the average teacher in one subject may have, on average, better quality teachers than another subject,
re-scaling test scores in each subject-year to have zero mean and unit variance precluded the examination of this
possibility. Thus, “across-subject variation” in this context refers to schools who have, say, relatively good algebra
teachers compared to the state’s average algebra teacher, but relatively poor biology teachers.

37. I actually use two different methods for constructing feasible paths of teachers for each student. The first method
includes any permutation of teachers that taught the appropriate subjects at the appropriate times at the appropriate
high school. However, this may overestimate the range of teaching possibilities available to the student if there are
scheduling conflicts (i.e. the student took English and Chemistry in the same year, and one of the English teachers
taught at the same time as one of the Chemistry teachers, making this combination of teachers infeasible). Thus, to get
a lower bound on the variance in average teacher quality across students under random assignment, I also performed
the analysis using only paths of teachers that were actually experienced by some student who took the same sequence
of courses in the same years as the student in question. This clearly understates the variance under random assignment,
since some feasible combinations of teachers may not have been actually chosen by any one student. The results were
not sensitive to the method chosen, suggesting that either scheduling conflicts were rare, or most feasible paths were
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rienced across students does contribute to performance heterogeneity, but the variance in average

teaching quality we observe is actually less than we would expect under random assignment.

VIII. THE IMPACT OF SCHOOL AND TEACHER INPUTS ON

ACHIEVEMENT INEQUALITY

Given knowledge of the underlying distributions of school and teacher quality, in this section I

examine the extent to which the existing allocation of students to teachers and schools is harming

disadvantaged students. First, I look at whether disadvantaged students are more likely to receive

their schools’ relatively ineffective teachers. Second, I look at whether the schools that dispro-

portionately serve underprivileged students are actually the worst schools. Finally, I attempt to

provide an aggregate measure of the contribution of school and teacher inputs to achievement gaps

between advantaged and disadvantaged students.

VIII.A. Are Underprivileged Students Systematically Being Assigned to Classes

with Inferior Teachers?

One way to interpret the results from Section VII is that the existing mechanisms for allocating

teachers to classes are not contributing to inequality in test score performance. However, it is

still possible that students in lower tracks are systematically receiving lower quality teachers, and

that the impact of such an imbalance on the student-level variance I estimated is being masked by

some other feature of the teacher allocation mechanism that is reducing variance in average teacher

quality among students on the same track.

Thus, I also look more directly at whether students with observable characteristics that predict

lower performance tend to receive their school’s relatively ineffective teachers over the course

of their high school careers. More specifically, I first form an index of student background,

(Xictβ̂ + Ỹiα̂), by weighting student characteristics by how well they predict high school test

score performance.38 Then, for each student among the bottom 10% of this index, I compare the

average estimated quality of the teachers that actually taught the student with the average estimated

taken by some student.
38. Note thatXict also includes the average prior test scores of a student’s classmates, so that this index also partially

reflects the kinds of peers they interact with.
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quality among the set of teachers who taught the subjects the student took in the years they took

them in their schools. I find that such students received teachers that were only .011 test score

standard deviations less effective than the average teacher across the set of feasible paths of teach-

ers available to them. Students in the top 10% of the index received teachers that were .022 better

than the average teacher they could have expected under random assignment, given the teachers

teaching in their subjects at the time. I find that black students received teachers who were .006

test score standard deviations less effective then they could have expected under random assign-

ment. Furthermore, if instead I use as the baseline the average teacher along only those feasible

paths of teachers that some other student at their school actually took during the years each student

was taking his/her respective courses, these small differences disappear entirely. Thus, I find very

little evidence that disadvantaged students are systematically being assigned relatively ineffective

teachers at their schools, and to the extent that such evidence does exist, it explains a minuscule

fraction of the performance gaps we observe.

VIII.B. What Kinds of Schools Disproportionately Serve Underprivileged Stu-

dents?

The estimated parameter distributions displayed in Section VI allow us to examine whether the

schools disproportionately serving underprivileged students are actually the worst schools. To this

end, Table V provides the average values of µ̂s, γ̂s, and δ̂s among schools in the top quartile and

bottom quartile of a set of salient measures of average student background. The signs for school

average teacher quality generally conform to expectations: schools whose students have low prior

test scores have below average teacher quality, as do schools with a high percentage of students

who are eligible for free lunch, and schools with a high fraction of black students (Columns 3 and

4). However, the magnitudes are small, in keeping with the general finding that very little of the

variance in teacher quality is between schools. These small differences also mirror the findings of

Sass et al. (2010) at the elementary school level.

The last row presents results for my most comprehensive measure of average student back-

ground, the average value of the index Xictβ + Ỹiα. I find that high schools whose average indices

across students place them in the bottom quartile of schools have teachers who are only .037 stu-

dent level standard deviations below average, while those in the top quartile have teachers who are

only .018 standard deviations above average. Columns 5 and 6, which replace µs with δ̂s, display
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essentially the same patterns; the schools in the top quartile of the average student index distri-

bution increase test scores by .076 student-level standard deviations relative to schools in bottom

quartile.

Columns 7 and 8 replace δ̂s with γ̂s. They reveal an interesting result: schools whose charac-

teristics generally predict lower achievement tend to be more sensitive to teacher quality. Schools

in the bottom quartile of 8th grade math scores and schools in the top quartile of percent free

lunch eligible and percent black have median values of γ̂ that are around 25% to 40% higher than

the overall median school in the sample. Most tellingly, schools in the bottom quartile of the

Xictβ+ Ỹiα index have median sensitivity of 1.38, while those in the top quartile have median sen-

sitivity of .70. Given the importance of sensitivity to teacher quality for the efficiency of policies

featuring teacher reallocation or retention as a way to boost achievement in struggling schools, I

investigate this finding in more detail in Section VIII.D.

VIII.C. The Aggregate Contribution of School and Teacher Inputs to Inequal-

ity of Opportunity

While Table V provides a good sense of the inputs provided by the schools most heavily pop-

ulated by disadvantaged students, even these schools serve a mix of under-supported and well-

supported students. Thus, to address more directly the contribution of unequal school and teacher

inputs to disparities in achievement, I examine the typical allotments of these inputs received by

particular subpopulations of students. In Table VI I calculate the average values of the various

school and teacher factors I have estimated among students in the bottom and top deciles and quar-

tiles of the student background index, (Xictβ + Ỹiα), as well as for both black students and white

students.

I find that students in the bottom decile of the student background index attend schools that

are .020 test score standard deviations below average and are 13% more sensitive than the median

school. They also receive teachers that are on balance .022 test score standard deviations below

average. Overall, the high school environment they experience (as measured by δs+γs(µi+d(ex)i))

lowers their test scores by .047 standard deviations, relative to a typical environment in North

Carolina. Students in the top decile go to schools that are 12% less sensitive than the median

school but whose average quality is .017 standard deviations above average. They are assigned

teachers that are .035 standard deviations above average. Overall, the high school environment

30



they experience raises their test scores by .061 standard deviations. The difference in the school

and teacher inputs the two groups receive can only account for .108 of the 2.5 standard deviation

difference in their test scores (4%). Thus, the way teacher and school inputs are allocated in North

Carolina is only making a marginal contribution to what was already a massive difference in high

school achievement between the least supported and best supported students.

The comparison between races reveals a similar pattern. Black students attend slightly below

average schools and receive slightly below average teachers in those schools, so that the overall

high school environment they face lowers their test scores by .029 standard deviations relative to

the average student. However, given that their test scores are .548 standard deviations below aver-

age, it is clear that while North Carolina high schools are not helping to fight racial achievement

inequality, they are certainly not a major source of the problem. Differences in typical high school

environments only account for 6% of the black-white test score gap.

VIII.D. Why Do Schools Serving Disadvantaged Populations Seem to be More

Sensitive to Teacher Quality?

In this section, I explore further the empirical finding presented above that the impact of high

quality teaching seems to be magnified in schools serving disadvantaged populations. Section III

noted that γs is identified by two sources of variation: (1) the rate at which test scores increase with

teacher experience, relative to other schools, and (2) variation across schools in the performance

of higher quality transferrers relative to lower quality transferrers, independently of experience.

Here I examine which source of variation is driving the relationship between measures of student

disadvantage and school sensitivity to teacher quality. I do this by estimating an even less restrictive

education production function in which schools are allowed to be differentially sensitive to the

permanent and the experience components of teacher quality:

(11) Yict = Ỹt−1
i αc +Xictβc + δs + γ1sµr + γ2sd(exrt) + εict

In this specification, γ1s scales the impact of persistent teacher quality on test scores and γ2s scales

the impact of increased teacher experience.39 Distinguishing between these two sources of vari-

39. Identification in this model requires a 2-edge connected graph of transfers across schools. Since I imposed that
the original sample of schools be 3-edge connected, this condition is automatically satisfied.
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ation is important for guiding policies to improve educational inequality. If the high values of

γs for high schools serving less prepared students are driven by sensitivity to teacher talent (high

γ1s), then policies that incentivize high caliber teachers to teach in such schools, such as Teach for

America, may have a substantive impact on achievement inequality. On the other hand, suppose

high values of γs are driven by teachers requiring more experience in order to be effective in diffi-

cult school environments (high γ2s). In this case, luring effective teachers from other schools may

not pay dividends. Instead, schools serving disadvantaged populations would be better served by

focusing on efforts to retain their more experienced teachers.

The last three columns of Table IV, under the heading “Dual Sensitivity”, present the results

from estimating equation (11). Before discussing these results, a few caveats must be mentioned.

To parallel the parameter constraints imposed in the baseline specification, at first I imposed the

constraints that γ1s ≥ .25 and γ2s ≥ .25. In the case of sensitivity to persistent teacher quality,

only a small handful of schools were bound by the constraints, and relaxing these constraints

produced a few low estimated sensitivities, and a single negative sensitivity, which destabilized the

measurement error correction but had little impact on the shape of the estimated distribution.

Surprisingly, however, over a quarter of the schools in the sample were bound by the con-

straints on γ2s. Since relaxing constraints on γ2s does not inflate estimates of teacher quality of

non-transferring teachers (unlike γ1s), the results displayed in Table IV reflect estimates from a

specification in which values of γ2s are unconstrained. While the estimates of γ̂2s are noisy, it

seems that there is a sizable fraction schools in which teacher either improve very little with ex-

perience, or they actually decline. One possibility is that teachers in some schools may get “burnt

out”. Indeed, this is a fear often vocalized in difficult to staff schools. However, the last two

columns of Table VII reveals that the opposite seems to be true: returns to experience are the high-

est in high poverty schools. The median school among those in the top quartile of percent black is

estimated to be 45% more sensitive to teacher experience than the median school statewide. The

median school among those in the bottom quartile of free lunch eligibility is 88% more sensitive

to experience than the overall median school, while the median school among those in the bottom

quartile of the average student background index is 91% more sensitive to experience. For each of

these three measures of disadvantage, the difference in the median sensitivity among the top quar-

tile and bottom quartile of schools is significantly different from 0 at the 5% level. Interestingly,

these results are at odds with those obtained by Sass et al. (2010) at the elementary school level.

They find that North Carolina math teachers improve very little with experience in high poverty
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schools.

Administrators in the Charlotte-Mecklenberg school system have recently launched a program

offering bonuses to teachers who stay in hard-to-staff schools for extended periods. These re-

sults suggest that such bonuses, if they successfully boost rates of retention, may reap substantial

rewards to students at these schools. Thus, while the analysis in Section VI.B suggests that differ-

ences in existing teacher experience distributions cannot currently account for observed disparities

in performance, preventing quits in disadvantaged schools could still contribute to eliminating such

achievement gaps.

Columns 5 and 6 of Table VII show that schools serving disadvantaged populations are also

more sensitive to the persistent component of teacher quality µr. The median school in the top

quartile of percent black is 14% more sensitive to persistent teacher quality than the median school

in the state. The median school among the bottom quartile of free lunch eligibility is 15% more

sensitive to persistent teacher quality than the overall median school, and the median school among

the bottom quartile as categorized by average student background is 21% more sensitive to per-

sistent teacher quality than the overall median school. These differences in γ1s are smaller than

corresponding differences for γs from the baseline specification documented in Section VIII.B,

suggesting that greater sensitivity to teacher experience was the principal source of the disparity

in γs among schools serving more and less disadvantaged students. Regardless of the measure of

disadvantage used for categorizing schools, the difference in sensitivity to persistent teacher qual-

ity between the top and bottom quartile of schools is not significantly different from 0 at the 10%

level. Nevertheless, it appears that both sources of variation in the original γ̂s are contributing to the

greater sensitivity to teacher quality at schools disproportionately serving disadvantaged students

found in the baseline specification. These results are consistent with Xu, Hannaway, and Taylor’s

(2011) finding using the same data that Teach for America teachers increased North Carolina high

school test scores relative to the a control group of existing teachers, and suggest that other efforts

to attract effective teachers to schools with struggling students might also bear fruit.40

40. The correlation between γ̂1s and γ̂2s is positive but only moderately strong (.20). Furthermore, adjusting for
(possibly correlated) sampling error in both γ̂1s and γ̂2s using the estimated error covariance matrix produces an
estimated underlying correlation between γ1s and γ2s of .28. However, due to very large standard errors on estimates
of γ̂2s, a Wald test fails to reject the restriction from the baseline model that γ1s = γ2s ∀ s. Indeed, the large standard
errors on γ1s, combined with minor differences in the standard errors between γ̂s and γ̂1s suggest that the variance in
the performance of transferring teachers was the main source of identifying variation in the baseline model.
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IX. CONCLUSION

In contrast to the horror stories recounted in the popular media in which the least privileged

students attend disorganized schools with ineffective teachers, I find instead that quality teaching

is fairly equitably distributed within and across high schools in North Carolina. Disadvantaged

students, as indicated by low values of the predictive index Xitβ + Ỹiα, do tend to be exposed

slightly inferior high school environments. However, the contribution of this source of inequality

to overall test score achievement gaps is nearly negligible, suggesting that high school may be too

late to intervene on behalf of underprivileged students.

Why don’t we see stronger sorting of teachers to schools? One explanation may be the limited

financial incentive a good school can offer, since the bulk of public school teachers’ salaries are

funded by the state in North Carolina, and all teachers in the same district with the same credentials

and experience are paid the same salary. Alternatively, the limited assortative matching of effective

teachers to desirable schools may partly reflect inadequate information by such schools at the time

of hiring, since previous research suggests that teacher characteristics that are easily observable

at the time of hiring are weak indicators of teacher quality (Clotfelter, Ladd, and Vigdor [2007];

Rockoff et al. [2008]). Such information scarcity is exacerbated by the notorious difficulty admin-

istrators have in firing underperforming teachers (even in a state without collective bargaining), so

that hiring mistakes may be difficult to rectify.

Since transfer patterns provide only faint evidence of an underlying job ladder (see Supple-

mentary Section X), a third possibility is that teachers hold weak or horizontal preferences among

schools, so that the notion of universally “desirable” schools is inaccurate, even if preferences for

particular school characteristics may be vertical (e.g. neighborhood crime rates).41

Another explanation may lie in the fact that teachers are hired by districts rather than schools,

so that for the half of transfers are occurring within districts, transfer patterns may more closely

reflect the preferences of district administrators rather than teachers. In this case, within-district

job desirability would not be reflected in teacher transfers. Moveover, if administrators value

equality of opportunity and have sufficient knowledge of experienced teachers’ relative qualities

when transfer opportunities arise, their teacher reallocation decisions may actually be contributing

to the relative teaching equality across schools (at least within districts).

41. Research by Boyd et al. (2005) suggests that distance from home is perhaps the strongest factor in teacher
location decisions. If teachers are drawn from all over the state, this finding may partly explain disagreement among
teachers in preferences over schools. Evidence that teacher’s quit rates and location decisions do respond systemati-
cally to some school characteristics can be seen in Goldhaber, Gross and Player (2007) and Jackson (2009).

34



While differences in average teacher quality do not explain performance gaps across schools,

I do find that teachers matter, even at the high school level. Within-school variation in teacher

quality accounts for a non-trivial fraction of the within-school test score variance. Assignment to

a teacher who is one standard deviation above average raises a student’s expected test score by

.17 student-level standard deviations at a school of median sensitivity, enough to move an average

student from the 50th to the 57th percentile of the state test score distribution.

Given the sizable variation in teacher quality within schools, I explore the impact that variation

in the average teacher quality experienced while in high school has on performance differences

among students attending the same schools. While I find that which teachers a given student

happens to receive has a modest but non-negligible impact on his overall performance in high

school, the variation in average teaching quality experienced across students is fully explained by

random assignment of students to teachers within a school. I find that disadvantaged students are

only slightly less likely to receive the relatively effective teachers at their high schools.

Finally, I find evidence of substantial differences across schools in sensitivity to teacher quality

that can amplify or mute the effectiveness or ineffectiveness of teachers. Interestingly, the schools

that are estimated to be most sensitive to teacher quality tend to be those serving students whose

characteristics are usually associated with low performance. Estimates from a more general spec-

ification reveal that such schools seem to be slightly more sensitive to improvements in teacher

quality stemming from more talented teachers and substantially more sensitive to improvements

in teacher quality from increased experience. Thus, policies that incentivize effective teachers to

join and to stay at struggling schools would be likely to increase average test scores statewide in

addition to the clear equity payoff.

What might cause student performance to respond more strongly to the quality of teaching in

schools serving disadvantaged populations? One possibility is that the ability to maintain control

of the classroom is a central component of teaching skill, and that its importance is magnified in

contexts where parents and the principal are providing less support. Furthermore, classroom con-

trol techniques are likely to be primarily learned with experience, which would be consistent with

the results reported above. A second possibility is that wealthier and better prepared students (and

their parents) have the time and resources to compensate more strongly for inadequate teachers by

seeking outside tutoring or studying textbooks outside of class. Investigating the conditions under

which teachers can make a bigger difference is a ripe area for future research.

A caveat merits mention. The distributions of teacher quality and school sensitivity character-
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ized by this paper reflect the equilibrium that existed in North Carolina between 1997 and 2006. If

we change the mechanisms by which teachers are recruited and evaluated, the content of the cur-

ricula upon which the subject tests are based, or the manner in which parents and students sort into

schools, we should expect to move to a new equilibrium that exhibits a distinct joint distribution of

school and teacher quality. For this reason, we must be cautious about generalizing these results to

other states, grade levels, or outcomes.

DEPARTMENT OF ECONOMICS AND SCHOOL OF INDUSTRIAL AND LABOR RELATIONS
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X. TABLES AND FIGURES

TABLE I: THE DISTRIBUTION OF TEACHER CREDENTIALS ACROSS SCHOOLS

Selected Quantiles of the Distribution of School
Means of Selected Teacher Credentials

Credential 5th 25th 50th 75th 95th

Fraction of Teachers w/Masters
.110 .196 .259 .332 .455

or Other Advanced Degree

Fraction of Teachers w/
0 .013 .039 .067 .138

National Board Certification

Fraction of Teachers
.053 .102 .138 .187 .284

Who Are Uncertified

Years of Teaching
8.67 11.13 12.65 14.23 16.75

Experience
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TABLE II: VARIANCE DECOMPOSITION OF STUDENT TEST SCORES

Variance Component Variance
Standard Fraction of
Deviation Total Var.

(1) Total: V ar(Yist) .907 .95 –

Components:

(2)
Student Background

.514 .717 .567
V ar(Xictβc + Ỹ t−1

i )

(3)
Effective School and Teacher Quality

.047 .216 .052
V ar(λsrj)

∗

(4)
Cov(Stu. Background, Eff. Sch./Tch. Qual.)

.029 – .032
2 ∗ Cov(Xictβc + Ỹ t−1

i , λsrj)

(5)
Idiosyncratic Test Score Error

.317 .563 .350
V ar(εict)

(6) Between School Total: V ar(Y s) .079 .280 .087

Components:

(7)
School Average Student Background

.058 .242 .065
V ar(Xsβc + Ỹ

t−1

s )

(8)
Total School Quality

.009 .097 .010
V ar(λs)

∗∗

(9)
Cov(Avg. Stu. Background, Total Sch. Qual.)

.010 – .011
2 ∗ Cov(Xsβc + Ỹ

t−1

s , λs)

∗λsrj is the mean unpredicted test score of students taught by teacher r in school s while the teacher
was in experience cell j (See Supplementary Section IV). λsrj = λh = δs+γs(µr+d(exrt))+ωsrj .
Thus, V ar(λsrj) consists of the combined contributions of school quality, school sensitivity to
teacher quality, teacher quality, teacher experience, and the component of the idiosyncratic error
that is between school-teacher experience cells.
Note that “Student Background” includes the impact of classroom peers, since average observable
characteristics of classmates are elements of Xict.
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TABLE III: THE IMPORTANCE OF TEACHER EXPERIENCE FOR IMPROVING TEST SCORES

AND FOR EXPLAINING STUDENT PERFORMANCE GAPS ACROSS SCHOOLS

Panel A: The Impact of Teacher Experience on Student Standardized Test Scores

Years of Experience

Ex 0 1 2 3-5 6-11 12+

d̂(Ex)
0 .040 .064 .088 .116 .145
(0) (.014) (.023) (.031) (.041) (.051)

Panel B: The Distribution of Average Teacher Effective Experience (d̂(ex)s) Across Schools

Quantile of d̂(ex)s
1st % 5th % 25th % 75th % 95th % 99th %

Test Score SDs -0.030 -0.016 -0.007 0.007 0.014 0.022

Test Score Percentile
48.8% 49.4% 49.7% 50.3% 50.6% 50.9%

(Avg. Student)

The distribution of d̂(ex)s has been re-normalized to have a median of zero, so that the table entries
in Row 1 of Panel B reflect the impact on expected test scores of attending a school whose average
teacher effective experience places it at the k-th quantile, relative to attending a school with median
effective experience among its teachers. Row 2 displays the test score percentile that an average
student (50th percentile at the median school) would obtain if they instead experienced the teacher
experience distribution of the k-th quantile school.
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TABLE IV: RAW AND ERROR-ADJUSTED VARIANCES IN µr , µs, γs, AND δs:
BASELINE AND LINEAR SPECIFICATIONS

Baseline Model Uniform Sensitivity Dual Sensitivity

δs + γs(µr + d(expr)) δs + µr + d(expr) δs + γ1sµr + γ2sd(expr)

Parameter
Raw True True Raw True True Raw True True
Var. Var. Std. Var. Var. Std. Var. Var. Std.

Teacher Quality (µr)
.077 .030 .174 .040 .030 .172 .130 .016 .125

(.005) (.002) (.004) (.001) (.001) (.003) (.011) (.008) (.041)

School Average .012 .004 .061 .008 .005 .073 .025 .0003 .018
Teacher Quality (µs) (.001) (.001) (.009) (.001) (.001) (.005) (.003) (.003) (.036)

School Quality (δs)
.020 .013 .112 .011 .008 .090 .043 .022 .147

(.002) (.002) (.009) (.001) (.001) (.006) (.004) (.004) (.013)

School Sensitivity .787 .320 .566 – – – – – –
to Teacher Quality (γs) (.086) (.057) (.051) – – – – – –

School Sensitivity to – – – – – – .821 .223 .478
Permanent Tch. Qual. (γ1s) – – – – – – (.113) (.047) (.051)

School Sensitivity – – – – – – 3.06 .723 .850
to Teacher Experience (γ2s) – – – – – – (.235) (.173) (.104)

Approximate standard errors are in parentheses. They were obtained using bootstrap sam-
ples from the combinations of {µ̂, sd(µ̂)}, {γ̂, sd(γ̂)}, or {δ̂, sd(δ̂)} estimates. Unfortu-
nately, they are likely to be underestimates, since the individual parameter estimates are
held fixed across bootstrap samples, rather than re-estimating the model using each boot-
strap sample. Re-estimating the model (along with calculating analytical standard errors
for individual parameters) for each bootstrap sample was computationally infeasible.
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TABLE V: AVERAGE SCHOOLING INPUTS AMONG SCHOOLS IN THE TOP QUARTILE VERSUS

BOTTOM QUARTILE OF VARIOUS STUDENT CHARACTERISTICS: BASELINE MODEL

Mean Student Mean Teacher Mean School Mean Sens. to
Characteristic Quality (µ̂s) Quality (δ̂s) Tch. Qual. (γ̂s)

Bottom Top Bottom Top Bottom Top Bottom Top

Mean 8th Grade
-.155 .548

-.032 .025 -.028 .021 1.33 0.70
Math Score (.009) (.022) (.011) (.010) (.303) (.324)

Percent Black .058 .608
-.002 -.032 .026 -.019 .735 1.32
(.016) (.008) (.012) (.011) (.263) (.338)

Percent Hispanic .010 .086
-.002 .020 -.005 -.018 1.05 1.00
(.019) (.015) (.010) (.011) (.274) (.359)

Percent Eligible
.139 .516

.004 -.029 .037 -.018 0.87 1.34
for Free Lunch (.013) (.010) (.010) (.013) (.263) (.290)

Stu. Backgr. Index
-.382 .260

-.037 .018 -.042 .034 1.38 0.70
(Xiβ̂ + Ỹ t−1

i α̂) (.012) (.019) (.009) (.010) (.304) (.321)

Mean Student Characteristic is the average value of the student characteristic associated
with a given row among the schools in either the bottom or top quartile of schools sorted
by their values of that characteristic.
Mean Teacher Quality is the average value of estimated average teacher quality (µ̂s) among
schools in either the top or bottom quartile of schools sorted by their values of the student
background measure associated with a given row.
Mean School Quality is the average value of estimated school quality (δ̂s) among schools in
either the top or bottom quartile of schools sorted by their values of the student background
measure associated with a given row.
Mean Sens. to Tch. Qual. is the average value of estimated sensitivity to teacher quality
(γ̂s) among schools in either the top or bottom quartile of schools sorted by their values of
the student background measure associated with a given row.
Stu. Backgr. Index is an index of student background composed of the predicted test score
based solely on the student’s current observable characteristics and test scores collected
prior to high school.
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TABLE VI: AVERAGE SCHOOLING INPUTS AND OUTCOMES AMONG SELECTED

SUBPOPULATION OF STUDENTS, IN TEST SCORE STANDARD DEVIATIONS

Average Value of Input or Outcome Among Subpopulation

Total Within Sens. Total
Test Tch. Sch. Tch. Sch. to Tch. School

Student Score Qual. Qual. Qual. Qual. Contribution

Subpopulation (Y i) (µ̂i) (µ̂i − µ̂s) (δ̂s) (γ̂s) (δ̂s + γ̂s(µ̂i + d̂(ex)i))

Student Background
Index (XitB + Ỹ t−1

i α)

Bottom 10% -1.164 -.022 -.012 -.020 1.13 -.047

Bottom 25% -.894 -.020 -.010 -.015 1.11 -.040

Top 25% .974 .026 .015 .013 .90 .046

Top 10% 1.34 .035 .022 .017 .88 .061

Race

White .185 .007 .002 .007 .93 .017

Black -.548 -.015 -.006 -.012 1.11 -.029

“Bottom 10%” refers to the set of students whose value of the background index XitB + Ỹ t−1
i α

places them below the 10th quantile of the distribution of the index among all students.
“Total School Contribution” consists of the combined contributions of school quality, school sensi-
tivity to teacher quality, teacher quality, and teacher experience: δ̂s + γ̂s(µ̂i + d̂(ex)i).
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TABLE VII: AVERAGE SCHOOLING INPUTS AMONG SCHOOLS IN THE TOP QUARTILE

VERSUS BOTTOM QUARTILE OF VARIOUS STUDENT CHARACTERISTICS: DUAL

SENSITIVITY MODEL

Mean Student Mean Teacher Mean Sens. to Mean Sens. to
Characteristic Quality (µ̂s) Tch. Qual. (γ̂1s) Tch. Exp. (γ̂2s)

Bottom Top Bottom Top Bottom Top Bottom Top

Mean 8th Grade
-.155 .548

-.033 .030 1.24 .902 1.62 .708
Math Score (.015) (.031) (.223) (.238) (.251) (.282)

Percent Black .058 .608
.027 -.026 .902 1.14 .589 1.45

(.025) (.011) (.206) (.222) (.244) (.243)

Percent Hispanic .010 .086
-.005 .028 1.04 1.01 .943 1.30
(.019) (.024) (.211) (.239) (.250) (.235)

Percent Eligible
.139 .516

.005 -.055 .919 1.15 .591 1.88
for Free Lunch (.016) (.025) (.236) (.213) (.267) (.257)

Stu. Backgr. Index
-.382 .260

-.046 .031 1.21 .902 1.91 .708
(Xiβ̂ + Ỹ t−1

i α̂) (.016) (.025) (.232) (.230) (.248) (.271)

Mean Student Characteristic is the average value of the student characteristic associated
with a given row among the schools in either the bottom or top quartile of schools sorted
by their values of that characteristic.
Mean Teacher Quality is the average value of estimated average teacher quality (µ̂s) among
schools in either the top or bottom quartile of schools sorted by their values of the student
background measure associated with a given row.
Mean Sens. to Tch. Qual. is the average value of estimated sensitivity to persistent teacher
quality (γ̂1s) among schools in either the top or bottom quartile of schools sorted by their
values of the student background measure associated with a given row.
Mean Sens. to Tch. Exp. is the median value of estimated sensitivity to teacher quality
increases stemming from teacher experience (γ̂2s) among schools in either the top or bot-
tom quartile of schools sorted by their values of the student background measure associated
with a given row.
Stu. Backgr. Index is an index of student background composed of the predicted test score
based solely on the student’s current observable characteristics and test scores collected
prior to high school.
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FIGURE I: A GRAPHICAL DEPICTION OF THE NETWORK OF TEACHER TRANSFERS

(a) DISTRIBUTION OF THE NUMBER OF TRANSFERRERS ACROSS SCHOOLS

(b) DISTRIBUTION OF THE NUMBER OF EXAMS ADMINISTERED ACROSS TEACHERS

(c) DISTRIBUTION OF MIN(TOTAL STUDENTS1, TOTAL STUDENTS2) FOR TRANSFERRING TEACHERS
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FIGURE II: INDIVIDUAL TEACHER QUALITY ESTIMATES (µ̂r) AND THE UNDERLYING

DENSITY OF TEACHER QUALITY (µr), AFTER CORRECTING FOR SAMPLING ERROR
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FIGURE III: SCHOOL AVERAGE TEACHER QUALITY ESTIMATES (µ̂s) AND THE UNDERLYING

DENSITY OF SCHOOL QUALITY (µs), AFTER CORRECTING FOR SAMPLING ERROR
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FIGURE IV: ESTIMATES OF SCHOOL SENSITIVITY TO TEACHER QUALITY (γ̂s) AND THE

UNDERLYING DENSITY OF SCHOOL SENSITIVITY TO TEACHER QUALITY (γs), AFTER

CORRECTING FOR SAMPLING ERROR
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FIGURE V: SCHOOL QUALITY ESTIMATES (δ̂s) AND THE UNDERLYING DENSITY OF SCHOOL

QUALITY (δs), AFTER CORRECTING FOR SAMPLING ERROR
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I. PROOF OF IDENTIFICATION

Proposition:

Consider a set of schools S and a set of teachers R, each of whom has taught at a school in S.

Suppose there exists a subset of teachers, R̃ ⊂ R, who have taught at multiple schools in S in such

a way that a connected graph may be formed with the schools in S as vertices and the transfers of

the members of R̃ as edges. Suppose further that teachers improve or decline over time for some

interval of experience (∃ x 6= x′ such that d(x) 6= d(x′)), and that there exists a teacher in each

1



school in S who is observed at both experience levels x and x′. Suppose also that γs > 0 for all

s ∈ S. Finally, suppose that Assumptions 1-3 hold. Then γs and δs are identified up to scale for

all s ∈ S, µr is identified up to scale for all r ∈ R, and d(ex) is identified up to scale for all levels

of experience observed.

Proof:

We assume for this proof that each school has a large number of teachers, each of whom taught

a large number students in each of a large number of years. Consider the set of teachers who

have taught at school s while at each of two experience levels x and x′, which we denote Rx,x′
s .

Suppose without loss of generality that each teacher is observed at experience levels x and x′ at

times t and t′, respectively. Also, let Zict represent the component of student i’s test score in

course c at time t that is unpredictable on the basis of his observable current and prior inputs:

Zict = Yict −Xictβc − Ỹ t−1
i αc.

1 Then, comparing the expected performance of students taught by

members ofRx,x′
s at time t with those taught at time t′, we have:

E[Zict|s(i, t) = S1, r(i, c, t) ∈ Rx,x′

s ]− E[Zict′|s(i, t′) = S1, r(i, c, t
′) ∈ Rx,x′

s ]

= γ1[d(x)− d(x′)] + E[εict|s(i, t) = S1, r(i, c, t) ∈ Rx,x′

s ]− E[εict|s(i, t′) = S1, r(i, c, t
′) ∈ Rx,x′

s ]

= γ1[d(x)− d(x′)],

(1)

where the expectation is over the distribution of εict, and we invoke Assumption 2 in moving from

the second to the third line.

Consider two schools, S1 and S2. If we construct the moment in ((1)) for both schools using

1. Note that β and α can be identified separately from the other parameters of interest using within teacher-year
variation.
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the sets of teachersRx,x′

S1
andRx,x′

S2
, respectively, and take the ratio of these moments, we have:

E[Zict|s(i, t) = S2, r(i, c, t) ∈ Rx,x′

S2
]− E[Zict′|s(i, t′) = S2, r(i, c, t

′) ∈ Rx,x′

S2
]

E[Zict|s(i, t) = S1, r(i, c, t) ∈ Rx,x′

S1
]− E[Zict′|s(i, t′) = S1, r(i, c, t′) ∈ Rx,x′

S1
]

=
γ2[d(x)− d(x′)]

γ1[d(x)− d(x′)]
=
γ2
γ1

(2)

Since γ1 > 0 and d(x) − d(x′) 6= 0 by assumption, if we normalize γ1 = 1 we can identify

the relative sensitivity of S2, γ2. Making such a comparison for each school in S identifies the

distribution of sensitivities {γS}, relative to the sensitivity of the normalized school, γ1.2

Note that εict includes school-year (φst) and teacher-year (νrt) error components in addition

to student-level measurement error and unobserved inputs. Thus, identification of relative school

sensitivities ({γs}) requires that teachers inRx,x′
s collectively teach at the school for a large number

of years. In practice, this could occur if there are few teachers inRx,x′
s but each teaches for a large

number of years at school s, or if there are many teachers in Rx,x′
s , each of whom teaches in a

moderate number of years in such a way that the full distribution of school years is represented.

Reconsider equation ((1)) above. Since the distribution of {γs} is identified by ratios of differ-

ence moments as shown above, the levels of these differences now identify d(x)− d(x′). Thus, if

we normalize the average quality of first year teachers to be 0, so that d(0) = 0, then we can iden-

tify d(ex) for all observed experience levels by comparing teachers’ performance while at these

levels to their performance in the first year.3

Now, let X denote the set of observed experience levels, and let psr(x) denote the fraction of

teacher r’s career at school s that was spent at experience level x. Also, let T s
r denote the set

of years in which teacher r taught at school s. For a particular teacher r′, the expected level of

performance for a student taught during the part of her career spent at school s′ can be expressed

2. Note that if d(x) varies over a number of values of x, we do not need to observe a large set of teachers in each
school at any particular combination of x and x′, just a large set of teachers observed at multiple experience levels,
whatever they might be. Comparisons between two schools can take place over the sets of teachers observed at each set
of adjacent experience levels, and the relative school sensitivities will be informed by all such moment comparisons.

3. Once d(x) has been identified for some values of x, comparisons can be made relative to these levels of experi-
ence.
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as:

E[Zict|s(i, t) = s′, r(i, c, t) = r′, t ∈ T s
r ] = δs′ + γs′(

∑
x∈X

ps
′

r′(x)d(x) + µr′)

+ E[εict|s(i, t) = s′, r(i, c, t) = r′, t ∈ T s
r ])

= δs′ + γs′(
∑
x∈X

ps
′

r′(x)d(x) + µr′)(3)

where we have invoked Assumptions 1 and 2 to move from the second to the third line.

Now, let R11 and R12 be two teachers who each taught at school S1. Comparing the expected

performance of their students over the course of their respective careers at S1, we obtain:

E[Zict|s(i, t) = S1, r(i, c, t) = R12, t ∈ T 1
12]− E[Zict|s(i, t) = S1, r(i, c, t) = R11, t ∈ T 1

11]

= γ1(
∑
x∈X

(p112(x)− p111(x))d(x) + (µ12 − µ11))(4)

Since teacher quality is only identified relative to other teachers, we normalize µ11 = 0. Since d(*)

and the set {γs} have already been identified, and we observe the fraction of each teacher’s career

at S1 spent in each experience cell, this difference moment identifies µ12. Similar comparisons

identify the qualities of all non-transferring teachers at school S1, {µk}, k ∈ R1/R̃1.

Finally, since we have a connected graph, there must be some teacher at S1, R1j , who is a

member of R̃, and thus has taught at another school, Sk. Suppose without loss of generality that

R1j transferred from S1 to Sk. The expected level of student performance of R1j during the part of

her career spent at school S1 is given by:

E[Zict|s(i, t) = S1, r(i, c, t) = R1j, t ∈ T 1
1j, R1j transferred from S1 at some t′ > t]

= δ1 + γ1(
∑
x∈X

p11j(x)d(x) + µ1j)

+ E[εict|s(i, t) = S1, r(i, c, t) = R1j, t ∈ T 1
1j, R1j transferred from S1 at some t′ > t]

= δ1 + γ1(
∑
x∈X

p11j(x)d(x) + µ1j)(5)
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where we have invoked Assumption 3 to move from lines 2 and 3 to line 4. Thus, comparing

the performance of R11 and R1j as in ((4)) identifies µ1j .

Similarly, the expected level of student performance of R1j during the part of her career spent

at school Sk is given by:

E[Zict|s(i, t) = Sk, r(i, c, t) = R1j, t ∈ T k
1j, R1j transferred to Sk at some t′ <= t]

= δk + γk(
∑
x∈X

pk1j(x)d(x) + µ1j)

+ E[εict|s(i, t) = Sk, r(i, c, t) = R1j, t ∈ T k
1j, R1j transferred to Sk at some t′ <= t]

= δk + γk(
∑
x∈X

pk1j(x)d(x) + µ1j)(6)

where we have again invoked Assumption 3 to move from lines 2 and 3 to line 4. Comparing

her performance while at Sk with another teacher at the school, Rk1, we have:

E[Zict|s(i, t) = Sk, r(i, c, t) = Rk1, t ∈ T k
k1]− E[Zict|s(i, t) = Sk, r(i, c, t) = R1j, t ∈ T k

1j]

= γk(
∑
x∈X

(pkk1(x)− pk1j(x))d(x) + (µk1 − µ1j))(7)

Since d(*), µ1j , and γk have been identified above, this difference identifies µk1. Similar com-

parisons identify µk∗ for the other teachers of Sk, including any teacher at school Sk who is member

of R̃. The expected level of test scores for any teacher l during her career at school k gives:

E[Zict′ |s(i, t′) = Sk, r(i, c, t
′) = Rkl] = δk + γk(

∑
x∈X

pkkl(x)d(x) + µkl)(8)

which identifies δk under Assumptions 1 and 2. By continuing to move along the connected graph

as we have just done, we can identify µr and δs for any teacher r ∈ R and any school s ∈ S.
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II. DETAILS OF NORMALIZATION

Recall from Appendix 1 that if the identification conditions are satisfied for S networked

schools, only S − 1 γ parameters, S − 1 δ parameters, T − 1 µ parameters, and J − 1 experi-

ence cell effects are identified. Thus, a key consideration is how to choose the normalization so

as to ensure that the parameters can be interpreted in a meaningful way. To maintain the sparsity

of the design matrices, during estimation we normalize γel to 1, δel to 0, and de(0) to 0, where the

“e” superscript indicates the values obtained after estimation before we re-normalize to achieve

our desired interpretation. NLLS is choosing γe, δe, de(ex) and µe to fit school-teacher-experience

level unpredicted means, which, according to the model, are produced by γ, δ, d(ex), and µ. Thus,

the following equation should hold for a teacher j teaching in school l in year t, subject to sampling

error:

δl + γl[µj + d(exjt)] = δel + γel [µe
j + de(exjt)](9)

Consider a second teacher, h, with the same experience, and suppose that both j and h switch

from school l to school m at the same time. Comparing the teachers to each other both at school l

and then again at school m, we obtain:

γel (µe
j − µe

h) = γl(µj − µh)(10)

γem(µe
j − µe

h) = γm(µj − µh)(11)

Recalling that γel has been normalized to 1, if we take the ratio of these two difference equations,

we obtain:

γem =
γm
γl

(12)

Note that this equation could be iteratively substituted when comparisons are made at any two
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schools, so it holds for all m. Thus, the estimated sensitivity of a given school is actually the sen-

sitivity relative to the sensitivity of the normalized school. Rather than choose an arbitrary school

as the standard, we take each estimated sensitivity and divide it by the median of the estimated

sensitivities:4

γ̂m =
γem

medk(γek)
=

γm/γl
medk(γk/γl)

=
γm

medk(γk)
(13)

So one can recover the sensitivity of each school relative to the median school (implying that

the median of γem is 1). Next, focus on just teacher j, and choose another year t′:

δl + γl[µj + d(exjt′)] = δel + γel [µe
j + de(exjt′)](14)

Then taking the difference between the year-specific mean unpredicted test scores of teacher j

across t and t′ gives:

γl[d(exjt − d(exjt′)] = γel [de[exjt)− de(exjt′)](15)

Let exjt = x and exjt′ = 0 (so that de(exjt′) = 0), and recall that γel = 1. Then we have:

de(x) = γl[d(x)− d(0)](16)

One can iteratively substitute this expression into differences evaluated at other experience

levels and other schools to show that this formula is general. So the estimated effect of a given

experience cell returned by NLLS is the effect of being in that cell relative to the omitted cell, when

at a school with the sensitivity of the omitted school. If we multiply our estimate by the median of

4. Since the sensitivities are scaling parameters, they are distributed approximately log-normally, so that the mean
is considerably larger than the median. Normalizing so that the mean sensitivity is 1 would imply that the clear
majority of schools have sensitivity greater than 1.
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{γe}, we obtain:

d̂(x) = medk(γek)de(x)

= medk(
γk
γl

)γl[d(x)− d(0)] = medk(γk)[d(x)− d(0)](17)

Thus, one can recover the expected increase in test scores associated with being in a given ex-

perience cell, relative to being a first-year teacher, when teaching at a school of median sensitivity.

Next, reconsider equation (9), but evaluated for teacher j when teaching at the normalized

school, l, at the normalized level of experience, 0:

δl + γl[µj + d(0)] = δel + γel [µe
j + de(0)] = µe

j(18)

Revisiting equation (11), and substituting for µe
j and γem, we have:

γem(µe
j − µe

h) =
γm
γl

(δl + γl[µj + d(0)]− µe
h) = γm(µj − µh)(19)

Solving for µe
h gives:

µe
h = δl + γl[µh + d(0)](20)

By continuing to make such comparisons between teachers along the connected graph of schools,

one can verify that this formula holds for any teacher h. If we compare the difference in estimated

qualities for any two teachers, we find:

µe
h − µe

j = γl(µh − µj)(21)

To eliminate dependence on the choice of normalized school, we follow the procedure used for
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d̂(ex), and multiply by the median of {γe}:

µ̂j − µ̂h = medk(γek)(µe
j − µe

h) = medk(
γk
γl

)γl(µj − µh) = medk(γk)(µj − µh)(22)

Thus, computing the left hand side for each pair of teachers gives the difference in the ability

of the two teachers to increase test scores when both are placed in a neutral school context. We

can normalize one µ parameter to be 0, use this equation to trace out the entire distribution, then

renormalize the distribution to have a zero mean.

Unfortunately, recovering an interpretable version of the δ parameters is not as easy. Consider

again equation (9), evaluated again for teacher j at experience 0, but this time while teaching at

school m:

δm + γm[µj + d(0)] = δem + γem[µe
j + de(0)](23)

If we plug in the expressions found above for γem and µe
j , and solve for δem, we obtain:

δem = δm −
γm
γl
δl(24)

To eliminate dependence on the choice of normalized school, we add the school’s estimated

teacher sensitivity multiplied by the mean estimated teacher quality (γem
1
R

∑
r µ

e
r):

δ̂m = δem + γem
1

R

∑
r

µe
r = δm −

γm
γl
δl +

γm
γl

1

R

∑
r

(δl + γl[µr + d(0)])

= δm + γm((
1

R

∑
r

µr) + d(0))(25)

Thus, our estimates of the additive school qualities unfortunately also reflect the true sensitivity

of the school to a new teacher of average quality. A strange feature of this non-linear model

is that seemingly meaningless assumptions about the decompositions of the level of average test

scores in the sample into contributions due to average school quality, average school sensitivity
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to teacher quality, average teacher quality, and average teacher experience drive components of

the estimated variance in school quality. It seems bizarre to claim that the average teacher in

North Carolina is increasing student test scores by some amount x, but that the average school is

decreasing test scores by the same amount x, or vice versa. Schools can only be compared relative

to schools, teachers relative to other teachers, and experience levels relative to other experience

levels. Furthermore, the test scores used as a dependent variable do not actually have a natural

scale (they have all been standardized to have zero mean and unit variance to facilitate comparison

across subjects), so the level of the average test score in the sample is meaningless as well. We

will assume in interpreting school additive effects that 1
R

∑
r(µr) + d(0) = 0. Then, differences in

estimated school additive effects can be interpreted as differences in the two schools’ abilities to

increase test scores.

III. MATCHING TEACHERS TO STUDENTS

The NCERDC raw data contains two distinct types of files. The End of Course (EOC) files con-

tain test score level observations for a certain subject in a certain year. Each observation contains

various student characteristics, including, importantly, the race, gender, grade level, and gifted sta-

tus of the student associated with the test score in question. It also contains the class period, course

type (which generally indicates academic level), subject code, test date (which generally indicates

the semester), school code, and teacher ID code. Unfortunately, the teacher ID corresponds to the

teacher who administered the exam, which, particularly in high school, cannot be assumed to be

the teacher that taught the class (although in many cases it will be). However, a unique combination

of the latter six pieces of information allows me to group students into classrooms. The Student

Activity Report (SAR) files contain classroom level observations for a certain year. Each observa-

tion contains a teacher ID code (in this case, the actual teacher that taught the class), school code,

subject code, academic level, and section number. It also contains the class size, the number of

students in each grade level in the classroom, and the number of students in each race-gender cell.
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Thus, in order to match students to the teacher who taught them, unique classrooms of students in

a given subject-school-year combination in the EOC data need to be matched to the appropriate

classroom in the SAR data. In small schools, this is often trivial, because there is only one teacher

in a given subject in a year, so any physics classroom in the EOC dataset can be safely attributed

to the single physics teacher. In large schools, there may be four physics teachers, each teaching

four sections, making this process much more subtle.

To overcome this problem, we match the class sizes, grade level totals, and race-gender cell

totals of the classrooms in the two datasets. So if one finds exactly one Chemistry class in School

1 in 1999 in both files that has 10 white females and 2 black males, with 5 11th graders and 7 10th

graders, one declares a match and removes the classes from the list of classes to be matched. Unfor-

tunately, the SAR data is collected at the beginning of the semester, and the EOC data is collected

at the end of the semester. Thus, students who change levels, change sections, or change schools

mid-semester will prevent a perfect match from being identified. Thus, we have implemented an

iterative fuzzy matching algorithm:

1. Find the absolute difference between each set of matchable classrooms in the following 11

categories: class size, number in each of four grade levels, and number in each of six race-

gender cells (hispanic/black/white by male/female).

2. Find pairs of classes that are identical in all 11 categories. If each member of a given pair is

only matched identically to its partner in the other dataset (and not a second SAR classroom,

for example), the match is made permanent, and these classes are removed from the set of

eligible classrooms in the SAR and EOC, respectively.

3. Find remaining pairs of classes that are identical in 10 of the 11 categories. If each member

of a given pair only meets this standard with respect to its partner in the other dataset, the

match is made permanent, and these classes are removed from the set of eligible classrooms

in the SAR and EOC, respectively.

4. Find remaining pairs of classes that are within one unit of each other in all 11 categories. If
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each member of a given pair only meets this standard with respect to its partner in the other

dataset, the match is made permanent, and these classes are removed from the set of eligible

classrooms in the SAR and EOC, respectively.

5. Continue lowering the standard in the manner of steps 3) and 4), until there is no pair of

remaining classes for which 9 categories are within 5 units of each other. Classrooms that

remain are deemed unmatchable, and discarded.

6. If more than one classroom in the SAR dataset is matched to a given classroom in the EOC

dataset at a given standard, but the teacher is the same in each of the SAR classrooms, that

teacher is matched to the EOC classroom.5

7. If two classes do not meet the match standard, but they are the only two remaining classes in

the school-subject-year cell, and the teacher id’s match, this teacher is matched to the EOC

classroom.

8. For those classes that remain unmatched because they meet the exact same standard with

multiple classes in the opposing dataset, repeat steps 1-7, except replace differences in grade

totals with indicators for whether the course type in the EOC data matches the academic

level in the SAR data, and whether the test date in the EOC data matches the semester in the

SAR data.

9. Repeat steps 1-8, but with percentage differences in each race-gender cell (from the begin-

ning), and percentage differences in each grade level total. This provides a second set of

classroom matches.

10. Compare the matches from steps 1-8 with the matches from step 9. If a given classroom is

matched to distinct opposing classrooms in the two match algorithms, dissolve the matches.

5. Note that this implies that we do not always know what academic level an EOC classroom was taught at, since
we can’t always uniquely identify the classroom in the SAR dataset, even if we can uniquely identify the teacher.
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If it is matched to the same opposing classroom in each algorithm, retain the match. If a pair

of classrooms are matched in one algorithm, but unmatched in the other, retain the match.6

11. Redo 1-10, but decrease the standard more quickly at each iteration. Compare the final

matches from this version of the algorithm to the final matches from 10, and dissolve matches

where a classroom is matched to different opposing classrooms in the different algorithms. 7

Frequently, fuzzy matching algorithms like these use a continuous weighting function over the

11 categories to evaluate the quality of the match, and relax the function value iteratively, instead

of imposing a strict difference standard for each category, adding up the number of categories that

meet this standard, and relaxing this standard iteratively. We chose the latter approach because

of its tolerance for typos. Standard weighting functions are usually convex in differences in each

category, so that having a large difference in one category severely reduces the quality of the match.

However, there were a number of cases in which a classroom in one dataset would have zeros for

all the race-gender totals, or an outlandish class size, and we wanted an algorithm that would

not punish too much matches which generally fit well, but had one or two categories with large

differences. The fraction of classrooms matched varied with the subject, ranging from around 79%

for Algebra 1 to 92% for Physics (since fewer people take Physics, there are many fewer sections

and teachers, making it much easier to match). If we imposed a strong match standard, in which

the algorithm in steps 1-8, 9, and 11 all had to agree on a given pair in order for the match to be

verified, the fraction of classrooms matched ranged from 50% in Algebra 1 to 85% in Physics.8

6. We hope to dissolve these matches, and re-estimate the model using only classrooms paired in both algorithms
as a robustness check.

7. The reason for this step is that if two different classrooms at a school have very similar makeups, dropouts and
transfers may make classroom 1 in the EOC dataset, measured at the beginning of the semester, actually match very
slightly better with classroom 2 in the SAR dataset, measured at the end of the semester; in steps 1-10, classroom 1 in
the EOC dataset will be incorrectly matched to classroom 2 in the SAR dataset, while in this step, a larger standard
drop in a given iteration will mean that classroom 1 in EOC will now meet the same new standard with classroom 1
and classroom 2 in SAR at the same time, and the algorithm will let the semester/academic level information decide
which classes get matched, instead of the very subtle difference in the quality of the race-gender distribution match.

8. Recall that the weaker standard still does not tolerate conflicts, but does tolerate one of the algorithms failing to
match a class at all, as long as the second does.
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IV. DETAILS OF ESTIMATION

If we stack all test scores into a single vector, we can rewrite the estimated specification in

matrix form as:

Y = Ỹα + Xβ + Cδ + Cγ[Mµ+ (Ex)d] + ε(26)

where:

Y is anNx1 vector of standardized test scores, aggregated across classes, courses, schools, and

years. Each test score is standardized relative to the distribution of test scores from the relevant

subject in the relevant year.

Ỹ is an NxL matrix of prior (pre-high school) test scores and squares of prior test scores.

X is an NxK matrix of covariates. Some covariates are at the classroom level, some are at the

student level. All covariates are fully interacted with subject indicators. Note that many students

have test scores in a number of high school subjects.

C is an NxS design matrix in which C(i, j) = 1 if test score i is associated with a class taken

in school j.

M is an NxR design matrix in which M(i, j) = 1 if test score i is associated with a class

taught by teacher j.

Ex is an NxJ design matrix in which Ex(i, j) = 1 if test score i is associated with a class in

which the teacher was in experience cell j.

d is a Jx1 vector of parameters that indicates how much an average teacher in the corresponding

experience cell increases test scores, relative to a first year teacher.

ε is an Nx1 vector of measurement errors and unobserved inputs.

First, note that while C and M are huge matrices, they are extremely sparse, so that employing

algorithms designed for sparse matrices considerably reduces the amount of memory required.
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Second, note that the estimated specification can be rewritten in the following way:

Yict = Xitβc + Ỹt−1
i αc + λct + εict(27)

where

λct = λsrj = δs(i,t) + γs(i,t)[d(exr(i,c,t)) + µr(i,c,t)](28)

In other words, one can first think of each test score as a combination of current and past family,

individual, and peer inputs, and a school-teacher-experience-specific effect. This suggests a two-

stage approach, in which the first stage estimates school-teacher-experience combination effects,

and the second stage decomposes these combination effects into additive school effects (δ), school

sensitivities (γ), experience profiles d(ex), and teacher effects (µ). The first stage estimates the

following equation:

Y = Xβ + Ỹα + Aλ+ ζ(29)

where A is anNxH matrix, withH denoting the number of observed school-teacher-experience

level combinations. A(i, j) = 1 if test score i was achieved in the j-th teacher-school-experience

combination. ζ is the component of ε that is within school-teacher-experience combinations.

The second stage estimates the following equation:

λ̂ = C̃δ + C̃γ[M̃µ+ ẽxD] + ω(30)

where C̃ is an HxS matrix such that C̃(i, j) = 1 if school-teacher-experience effect i is asso-

ciated with school j,

M̃ is an HxR matrix such that M̃(i, j) = 1 if school-teacher-experience effect i is associated

with teacher j,
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ẽx is an HxJ matrix such that ˜exp(i, j) = 1 if school-teacher-experience effect i is associated

with teacher experience cell j, and

ω(i) is the component of ε common to students in school-teacher-experience combination i.

Given that β and α are very precisely estimated using only within teacher-school-experience

cell variation, estimating equation (26) using a two-stage approach results in virtually no loss

of efficiency relative to the one stage approach. However, this approach has a couple of important

computational advantages. First, the first stage is linear, and can thus be estimated by OLS. Abowd,

Creecy, and Kramarz (2002) show that by expressing the OLS estimator as (X ′X)B = X ′Y , one

can use row-reduction to solve forB without needing to calculate (X ′X)−1, which would impose a

considerable computational burden. The resulting estimates λ̂ equal the mean test scores associated

with a given school-teacher-experience combination, net of the effects of the X covariates and the

Ỹ vector of prior test scores:

λ̂h =
1

Ni∈h

∑
i∈h

(Yi −Xiβ̂ − Ỹ t−1
i α̂)(31)

Second, the second stage, where nonlinear estimation is necessary, now involves D̃ and M̃ ,

which areHxS andHxR instead ofNxS andNxR. Third, notice that the identification argument

given above relied exclusively on across school-teacher and across-experience cell-within teacher

variation. Teachers that are only observed teaching within one experience cell contribute nothing

to the identification of δ, d(exp), γ, nor the µ parameters associated with any other teachers.

Specifically, the quality of each single experience cell teacher can be chosen to match exactly

the mean unpredicted test score associated with that teacher. Thus, first stage means associated

with single experience cell teachers can be dropped during second stage estimation, along with the

columns in M̃ associated with single experience cell teachers. Once the γ and δ parameters have

been estimated, one can then estimate the remaining µ parameters of the single experience cell

teachers by choosing µ to fit their mean unpredicted test score. This greatly reduces the number

of parameters being estimated, since about 27% of the teachers in my sample are only observed
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in one experience cell, which makes non-linear least squares computationally feasible.9 For an

alternative iterative method for computing a large number of fixed-effects in a non-linear model,

see Arcidiacono et al. (2011).

V. CALCULATION OF STANDARD ERRORS

Mimicking the estimation procedure documented in Appendix 4, standard errors are estimated

in two stages. First, we calculate the variance of student-level observable coefficients (β̂c and α̂c)

and school-teacher-experience cell combinations (λ̂) using the standard formula for OLS asymp-

totic variance: V = (G′G)−1G′ΩG(G′G)−1, where in our context G = [X, Ỹ , A] and Ω =

var(ζ). Then, in the second stage, we apply the standard formula for weighted NLLS asymp-

totic variance, using the estimated school-teacher-experience effects {λ̂} as observations: Σ =

(J ′WJ)−1J ′WVWJ(J ′WJ)−1. The weighting matrixW is a diagonalH xH matrix that weighs

each estimated school-teacher-experience effect λ̂ by the number of exam scores in the corre-

sponding school-teacher-experience cell. J is the H x (2S + R + J) Jacobian matrix of partial

derivatives of the school-teacher-experience residuals with respect to the parameters {δ̂}, {µ̂}, {γ̂}

and {d̂(ex)}. J can be calculated analytically, given the relatively simple non-linear form of the

production function.

However, the relative simplicity of these variance formulas belies the considerable computa-

tional difficulty associated with their evaluation. Recall that there are N = 4, 016, 343 test-score

level observations, K + L = 800 subject-specific coefficients on student background characteris-

tics and prior test scores, and H = 33, 153 school teacher experience cells. Direct evaluation of

V would require both the inversion of a 33, 953 x 33, 953 matrix (G′G) and the construction of a

4 million x 4 million matrix (Ω). Both of these operations exceed the memory limits of even very

powerful servers. A couple of subtle tricks were necessary to make this calculation feasible within

9. Note that this does not imply that 27% of my sample only teach in one experience cell. We only observe teachers
when they teach one of ten subjects, so many of the single experience cell teachers are teachers in different subjects
who were called upon to teach one of the ten we observe in only one year or time interval.
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a reasonable length of time. First, note that V can be written as the product V = AGB, where A

is the H x N matrix (G′G)−1G′Ω, G is N x H , and B is the H x H matrix (G′G)−1. Next, let

A(k) denote the k-th column of A, and define Ak as the H x N matrix in which the k-th column

consists of A(k), and all other elements are zeros. Note that A can be written as:

A = A1 + A2 + ...+ AN(32)

We can calculateAk, k = 1, ..., N , as follows. First, we construct the k-th column of Ω, denoted

Ω(k). Next we solve the linear system (G′G)A(k) = G′Ω(k) using Cholesky factorization to

recover A(k). Then, we create an H x N matrix of zeros, and substitute the k-th column with

A(k) to obtain Ak. Since only the k-th column of Ak has non-zero entries, we can store Ak easily

in memory as a sparse matrix. Breaking A up into these N distinct pieces facilitates the use of

parallel processing. This prevents statistical software from running out of working memory on any

given processor, and speeds up computation considerably.

While this procedure allows us to avoid both calculating (G′G)−1 directly and constructing Ω,

we cannot simply sum A1, ..., AN to recover A; A is still H x N , which is too large to load into

working memory on a single processor. We overcome this problem by post-multiplying each Ak

by G before summing, leaving the H x H matrix AG:

AG = A1G+ A2G+ ...+ ANG(33)

While post-multiplying by G removes sparsity, such sparsity is no longer necessary, since AG

is only H x H . Finally, in order to avoid calculating (G′G)−1 directly, we calculate V row-by-row

by solving the linear system V ′(k)(G′G) = (AG)′(k). We concatenate the V ′(k) and transpose to

recover V . An analogous procedure is employed to recover Σ, with V taking the place of Ω, and

JW taking the place of G.
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VI. MEASUREMENT ERROR

Given a limited number of teachers and a limited number of students per teacher, the variance in

the estimated distribution of persistent teacher quality, V ar(µ̂), will reflect both true variation in µ

and variation due to test score measurement error and the other unobserved components that make

up εict. This section describes the procedure used to isolate the true variance in teacher quality,

school quality, and school sensitivity to teacher quality.

First, I define each estimated teacher fixed effect µ̂r as the sum of the teacher’s true quality and

an uncorrelated error component: µ̂r = µr + ξr. Then the sample variance in estimated teacher

quality can be decomposed as:10

1

R

∑
r

(µ̂r)
2 =

1

R

∑
r

(µr)
2 +

1

R

∑
r

(ξr)
2(34)

Thus, one would like to estimate the variance in true teacher quality as:

ˆV ar(µr) =
1

R

∑
r

(µ̂r)
2 − 1

R

∑
r

(ξr)
2.(35)

ξr is not observed, but

1

R

∑
r

(ξr)
2 ≈ 1

R

∑
r

E[(ξr)
2] =

1

R

∑
r

(sd(ξr))
2,(36)

so I estimate the error variance component using the standard error estimates for each teacher:

ˆV ar(µr) =
1

R

∑
r

(µ̂r)
2 − 1

R

∑
r

(ŝd(ξr))
2(37)

I use the same technique to estimate the true variance in δs, γs, and school average teacher

10. I treat the set of teachers in North Carolina in the data to be the population of interest, and do not adjust for
sampling error in the set of teachers observed. The variance in true teacher quality I calculate can thus be interpreted
as the variance in the true quality of teachers teaching in the data, which covers all teachers in nearly all high schools
in North Carolina over a ten year period.
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quality µs.

VII. TESTING FOR VIOLATIONS OF THE EXOGENOUS

MOBILITY ASSUMPTION

Consistent estimation of the parameters requires that teachers’ transfer decisions are unrelated

to the composite error, εict. This is a strong assumption with important implications for the validity

of the estimates.

Specifically, recall that Assumption 3 requires:

E[εict|s(i, t) = s′, r(i, t) = r′; r′ transferred to s′ at some t′ <= t] = 0

E[εict|s(i, t) = s′, r(i, t) = r′; r′ transferred from s′ at some t′ > t] = 0(38)

Substituting the specification of the error components in for εict in ((38)), we observe that a

systematic relationship between a teacher’s transfer decision and any of these components would

violate Assumption 3. However, I restrict attention to two mechanisms that are particularly plausi-

ble, and develop tests for each.11

11. For example, one alternative is that measurement error in test scores or unobserved student inputs is related
to teacher mobility, so that teachers are more or less likely to move when the test scores their students receive less
accurately reflect the students’ true talent, or when their students are underprivileged in a way that prior test scores
and observed inputs would not reveal. We expect mobility driven by this mechanism, to the extent that it occurs, to
resemble one in which teachers instead move to schools where they are better matched; both imply that a teacher
should seem relatively more effective post-transfer than pre-transfer. Since I test for movement toward better match
quality below, I do not develop a separate test for this possibility. A second alternative, related to νrt, is that teachers
systematically transfer when their own quality is about to increase or decrease (relative to the standard experience
profile and their own average quality over time). This might occur, for example, if teachers systematically transfer
from urban to suburban schools when they are ready to start a family, and this coincides with them having less time
to devote to lesson plan preparation, which decreases their effectiveness. However, given that most schools exhibit a
mix of transfers in and transfers out (see the subsection on mobility imbalance below), it seems unlikely that certain
schools are systematically staffed with transferring teachers who happen to be having their relatively ineffective years
there (over and above what can be predicted based on experience).

20



VII.A. Do Teachers Try to Escape from Declining Schools?

The first mechanism, related to φst, is that teachers systematically transfer toward or away from

schools that are about to get better or worse, relative to the school’s average quality over the sample

period. This might occur, for example, if teachers follow a particularly effective principal when he

or she moves from school to school.

To test this hypothesis, I re-estimate the model with school-year additive effects, so that δs is

replaced with δst.12 Then, for each transferring teacher r, let t̃(r) be the last year they teach at

the school they transfer away from (denoted s). We can compute the average value of δ̂st for the

school he/she left for the years during/before their exit (t <= t̃(r)) and for the years after they left

(t > t̃(r)). If teachers are transferring away from schools that are about to decline, then the mean

difference among these two measures across transferring teachers should be positive:13

1

|R̃|

∑
r∈R̃

(
1

|T̃ A
r |

∑
t<=t̃(r)

δ̂st −
1

|T̃ B
r |

∑
t>t̃(r)

δ̂st) > 0.(39)

Likewise, for each transferring teacher, we can compute the average value of δ̂s′t for the school

he/she joined (denoted s′) for the years before his/her arrival and for the years after his/her arrival.

If teachers are transferring toward schools that are about to improve, then the mean difference

among these two measures should be negative:

1

|R̃|

∑
r∈R̃

(
1

|T̃ B
r |

∑
t<=t̃(r)

δ̂s′t −
1

|T̃ A
r |

∑
t>t̃(r)

δ̂s′t) < 0.(40)

I perform these tests, and find, strangely that while the schools that teachers join do indeed per-

form .009 student-level standard deviations better after the teachers arrive, the schools teachers

12. Identification of this model requires a connected graph of teachers to link each school-year combination. But
since the majority of teachers stay at a given school from one year to the next, connecting school-years within a school
is trivial. And I already have verified the existence of a connected graph between schools.

13. |R̃| denotes the size of the set of transferring teachers, |T̃ B | denotes the total number of years in the sample
spent by transferring teacher r at school s before transferring, and |T̃ A| denotes the total number of years in the sample
at school s after r transferred away.
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leave also perform .012 better after the transferrers leave. The small and insignificant magnitudes

and conflicting interpretations of these test statistics suggest that teacher mobility is generally not

driven by changes in school quality.

VII.B. Do Teachers Move to Schools Where They Are Better Matched?

The education production function employed to this point has assumed that the match quality

between schools and teachers is fully captured by the complementarity between teacher quality

and school sensitivity to teacher quality. However, there is a growing literature inspired by Abowd,

Kramarz, and Margolis’ (1999) decomposition of wages that models employer-employee sorting

based on match quality and its implications for the interpretation of firm and worker fixed effects

(see Lise, Meghir, and Robin [2008] and Lopes de Melo [2009] for examples). Some of the issues

raised in this literature do not apply in the present context, since the outcome we are decomposing

(essentially, average test score residuals for school-teacher combinations) is a direct measure of

productivity, rather than an equilibrium object. Nonetheless, research by Jackson (2010) suggests

that teacher-school match components are large enough to be economically important, and that

teacher mobility might be related to match quality. Thus, in this section I entertain the possibility

that εict contains a match component, κrs, beyond that which is captured by the interaction between

teacher quality and school sensitivity to teacher quality:

εict = (f c(Ft−1
i ,At−1

i ,Pt−1
i ,Rt−1

i ,St−1
i )− Ỹt−1

i αc) + (gc(Fit,Ait,Pit)−Xictβc)

+ φst + γs(νrt + κrs) + eict(41)

κrs captures the possibility that teachers may be idiosyncratically more or less effective at teaching

at particular schools. For example, such a match component might reflect the extent to which a

teacher’s teaching strengths coincide with how the principal wants lesson plans to be organized, or

classrooms to be managed. The existence of the additional match component complicates interpre-

tation of the estimated parameters, γ̂, δ̂, and µ̂. In particular, a teacher’s estimated quality, µ̂ will
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reflect not just her true quality, µ, but also her match component at her school (or, for transferring

teachers, a weighted average of their match components at the schools at which they worked).14

My estimate of the variance in teaching quality within schools will now reflect both the variance

in true teaching quality, µ, and the variance in the teacher-school match component, κrs. Note,

though, that the composite teacher quality estimates and the composite within school variance es-

timate are actually the relevant factors for examining the contribution of the current allocation of

teachers to student performance inequality, since it is the combination of µr and κrs that determines

how effective teachers are in the schools at which they are actually teaching.15

However, the introduction of κrs creates another mechanism by which Assumption 3 might be

violated: teachers might systematically transfer to schools at which they are relatively better at

teaching. Such movement toward comparative advantage would imply that mobility is not merely

potentially disruptive churning, but progress toward efficient allocation of teachers to schools.

VII.B..1 The Extent of Mobility Imbalance

Developing a direct test of movement toward better match quality is more challenging. How-

ever, the impact of this form of endogenous mobility on parameter estimates depends critically

on the extent to which mobility is “balanced”. I refer to a school’s pattern of teacher transfers as

“balanced” if the number of teacher transfers away from the school equals the number of teacher

transfers toward the school.

To see the importance of balanced mobility, consider the following simplified example. Sup-

14. To see this, re-examine equation ((4)) in the identification proof in Supplementary Section I. The difference in
two teacher’s average student residuals at the same school will now reflect the difference in the quality of their matches
with the school, κ12,1−κ11,1 in addition to the difference in their true persistent qualities, even after the teachers have
each taught for many years at the school.

15. To the extent that schools and teachers can identify their potential match quality during job interviews, a model of
sorting in the spirit of Lise, Meghir, and Robin (2008) or Lopes de Melo (2009) might predict that the average match
component among teachers at their initial school would be positive. However, since I only compare each school’s
quality relative to other schools, and each teacher’s quality relative to other teachers, the average match quality among
schools or teachers will have no impact on the estimates. To the extent that a particular school is relatively good
at identifying teachers who will be good matches during hiring, all their teachers will perform relatively well there,
so this will contribute to a larger school quality estimate, δ̂. This is appropriate, since such hiring skill would be a
persistent school-specific characteristic. Similarly, if all above average teachers teach relatively well at a school, this
suggests a high sensitivity to teacher quality at that school, and is precisely what we are trying to capture with γ̂s.
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pose there are only two schools, A and B, with the same quality (δA = δB), sensitivity to teacher

quality (γA = γB), and average teacher quality (µA = µB). Suppose further that a set of teachers

transfer from A to B because they are better matched at B than at A (κrB > κrA). If these are the

only teachers that transfer between A and B, then each transferring teacher has had their relatively

ineffective years at A and relatively effective years at B, so that the average test residuals of their

students will be higher at B than at A.

Under the assumptions of the model, the difference in the average test score residual among

these transferring teachers at the two schools identifies the relative qualities of the schools. Thus,

to best fit the model to the data, δ̂B > δ̂A, so we will overestimate the quality of school B relative

to school A. Furthermore, since we have underestimated δ̂A and overestimated δ̂B, the model fits

the average scores of non-transferring teachers by overestimating the qualities of those at school

A, and underestimating the qualities of those at school B (µ̂B < µ̂A).16

However, suppose there exists a second set of teachers of equal size that transfer from B to A

because they are better matched at A than at B (κrB < κrA), and that the average magnitude of

comparative advantage |κrB−κrA| is the same across the two sets of transferrers. Then the average

test score residuals at school A among the entire set of teachers who transferred between A and B

will be the same as the average test score residuals at school B, so that the relative school qualities

and mean teacher qualities of school A and school B will not be biased. Thus, if mobility is fully

balanced, movement toward better match quality will not bias estimates of average school quality,

average school sensitivity, and average teacher quality across schools. Supplementary Section VIII

offers a more formal treatment of this insight.

On the other hand, suppose there is a clear job ladder among schools, so that less desirable

schools generally lose transferring teachers to more desirable schools and replace them with novice

teachers, while more desirable schools tend to replace retiring teachers with transfers from less de-

sirable schools. Then, directed mobility may lead us to underestimate the quality of less desirable

16. If transferring teachers tend to be above average teachers, then the model will also overestimate the sensitivity
of school B, though this will be muted, since the relative performance of the good teachers compared to the bad
ones among the transferrers at each of the two schools will also provide (correct) information about relative school
sensitivities.
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schools relative to more desirable schools, and overestimate the average quality of their teachers.

Fortunately, for 56% of schools in the sample, the fraction of transfers leaving was between

.4 and .6. Furthermore, after accounting for school openings and closings and for sampling error

stemming from a relatively small sample of transferring teachers associated with each school, I

show in Supplementary Section X that transfer patterns are consistent with the absence systematic

ladder, and inconsistent with a strong ladder.

VII.B..2 Testing for Endogenous Mobility

Recalling the two school example above, the evidence of systematic mobility imbalance, while

fairly weak, implies that movement toward comparative advantage may lead us to underestimate

the quality of schools serving underprivileged youth, and overestimate the quality of the teachers at

these schools. This will occur if teachers decide to transfer only if the school serves better prepared

students and they are better matched at such schools.

Fortunately, the two school example also suggests a possible test for mobility driven by match

quality. Because the consistency of parameter estimates associated with a set of schools exhibiting

balanced mobility does not require Assumption 3, if teachers are moving to better matches, a given

transferring teacher should have his relatively ineffective years when teaching at the school he

transferred away from and his relatively effective years when teaching at the school he transferred

toward, compared to his overall average performance. Thus, for each teacher that transferred

between two schools exhibiting balanced mobility, I calculate her average test score residual among

students taught before transferring, and among students taught after transferring (ε̂
Before

r and ε̂
After

r ,

respectively). The test statistic is the average difference between these residual means across all

transferring teachers connecting schools featuring balanced mobility:

1

|R̃B|

∑
r∈R̃B

(ε̂
After

r − ε̂Before

r )(42)

We can interpret this statistic as the average increase in teachers’ abilities to increase student test
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scores following a transfer.

Under the null hypothesis of exogenous mobility, the average difference between these residuals

across all transferring teachers should converge to 0 as the number of transferring teachers gets

large. If we restrict the sample of transfers to those occurring between the 56% of schools whose

fraction of transfers leaving was between .4 and .6 in the data, the value of the test statistic is .009,

with a standard error of .012. If we define the balanced schools more restrictively to be the 31%

of schools whose fraction of transfers leaving was between .45 and .55, the test statistic is .016,

with a standard error of .021. Notice that if these point estimates do capture the average increase

in match quality associated with a transfer, then they would place an approximate upper bound

on the extent of downward bias in the school quality variance estimates and on the corresponding

upward bias in average teacher quality estimates for the strongest net senders as a result of this

type of endogenous mobility. This is because even most net senders have at least a few offsetting

arriving transfers, and we would expect these teachers to have their relatively effective years at

these schools, thus counteracting part of the bias.

While I fail to reject the assumption of exogenous mobility, I do not have the power to rule

out that some movement is driven by match quality or other components of the error term εict.17

However, violations of exogenous mobility do not seem to be introducing significant bias into

estimates of the differences in quality or average teacher quality between schools.

VIII. PROOF OF IDENTIFICATION WITH ENDOGENOUS

MOBILITY TOWARD BETTER MATCH QUALITY, WHEN

MOBILITY IS BALANCED

This section amends the identification proof in Appendix 1 for the case in which teachers’

transfer decisions may be based in part on their current or potential match quality, κrs. In place

17. Note, though, that there is no monetary incentive for teachers to transfer toward better match quality, since
teacher salaries only depend on education, experience, and district-specific premia.
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of Assumption 3, we assume instead that a large set of transfers connects each school, and that

mobility is balanced at each school, so that the number of transfers into each school equals the

number of transfers out. We also assume that the strength of movement driven by match quality

does not depend on the school: E[κrs|r transferred from s] = c and E[κrs|r transferred to s] = d,

for some constants c and d, for all schools s. This proof mirrors its analog from Appendix 1 until

the identification of the quality of transferring teachers, beginning in the paragraph before equation

((5)). Hence, the set {γs}, the function d(∗), and the qualities of non-transferring teachers at school

S1, {µr|r ∈ R1/R̃1} are identified as before. We show that the set of school qualities, {δs}, and

the set of non-transferring teacher qualities, {µr|r ∈ R/R̃}, are still identified.

Let R̃o
s denote the (large) set of transferring teachers who taught at school s and then transferred

out to a different school, and let psR̃o(x) denote the fraction of total years spent at s among members

of R̃o
s that were spent at experience level x. Similarly, let R̃i

s denote the set of transferring teachers

who transferred in to s, and define psR̃i(x) analogously. If mobility is balanced, then the expected

residual among transferring teachers associated with school S1 while at school S1 is an equally

weighted average of two components:

E[Zict|s(i, t) = S1, r(i, c, t) ∈ R̃1]

=
1

2
(E[Zict|s(i, t) = S1, r(i, c, t) ∈ R̃o

1) +
1

2
(E[Zict|s(i, t) = S1, r(i, c, t) ∈ R̃i

1])

=
1

2
(δ1 + γ1(

∑
x∈X

p1R̃o(x)d(x) + E[µr + κr1|r ∈ R̃o
1])

+
1

2
(δ1 + γ1(

∑
x∈X

p1R̃i(x)d(x) + E[µr + κr1|r ∈ R̃i
1]))(43)

where the expectation in this case is over the choice of teacher within the set of transferring teachers

(with the probability that a given teacher is chosen given by the fraction of students collectively

taught by the set at that school that were taught by the particular teacher), as well as over the

distribution of εict. We have also invoked Assumption 1 and 2 to move from line 1 to line 2. Recall

that γ1 has been normalized to 1, δ1 has been normalized to 0, and d(∗) can be identified using
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within-school variation in performance across experience levels. Thus, comparing this moment

with the moment in equation ((5)), we can see that in the absence of endogenous mobility, this

moment would identify the true average teaching quality of transferring teachers. Instead, with

movement driven by match quality, we identify a combination of the average teaching quality and

the average match quality of transferring teachers at the school, averaged across transferrers that

left and came: E[µr + κr1|r ∈ R̃1]. To the extent that transferring teachers are on average less

well matched over the course of their careers, their qualities will be underestimated relative to

non-transferring teachers.

Now, suppose that all members of R̃1 transferred to or from school Sk (so R̃1 = R̃k and

mobility at Sk is also balanced).18 Then the expected average residual among transferring teachers

associated with Sk is given by:

E[Zict|s(i, t) = Sk, r(i, c, t) ∈ R̃1]

=
1

2
(E[Zict|s(i, t) = Sk, r(i, c, t) ∈ R̃o

1])

+
1

2
(E[Zict|s(i, t) = Sk, r(i, c, t) =∈ R̃i

k])

=
1

2
(δk + γk(

∑
x∈X

pkR̃o(x)d(x) + E[µr + κrk|r(i, c, t) ∈ R̃i
1]))

+
1

2
(δk + γk(

∑
x∈X

pkR̃i(x)d(x) + E[µr + κrk|r(i, c, t) ∈ R̃o
1]))(44)

Note that d(∗) and {γs} have already been identified from variation in performance across experi-

ence levels. Furthermore, E[µr + κrk|r ∈ R̃1] = E[µr + κr1|r ∈ R̃1] by the strength of mobility

assumption stated above, and E[µr + κr1|r ∈ R̃1] was identified by the moment in equation (44).

Thus, this moment identifies δ2. The level of performance of each non-transferring teacher at

school k then identifies her quality, as in the proof of the baseline model. Thus, mobility driven

18. I am almost certain that this is actually without loss of generality, but the proof requires a very different form
if mobility is not balanced across all pairs of schools (but is still balanced overall for each school). Rather than
identifying parameters sequentially as we have done here, we would need to show that the system of moment equations
relating average student residuals in each school-teacher-experience level cell to the underlying parameters has a
unique solution.
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by match quality undermines the identification of the relative quality of transferring teachers com-

pared to non-transferring teachers, but if mobility is balanced, it does not undermine identification

of relative school quality, nor the identification of school sensitivity to teacher quality or relative

average quality of non-transferring teachers among different schools. Overall average teaching

quality at a school will only be biased to the extent that the school has a relatively large or small

fraction of its teachers that are transferrers, and the average match quality of transferrers over their

careers is different from that of non-transferring teachers.

IX. EFFICIENT ALLOCATION OF TEACHERS TO SCHOOLS

Given the nature of complementarity between school and teacher quality in the model, a pos-

itive assortative match in which the schools most sensitive to teacher quality are paired with the

most effective teachers maximizes expected state average test scores. Thus, in this section we

estimate the impact on both the level and distribution of student performance from implementing

this allocation relative to both the status quo and a scenario in which average teacher quality is

equalized across schools.

A number of caveats are in order. First, we hold fixed the sorting of students to schools we

observe in the data. The endogenous response of parents to changes in school average teacher

quality might erode some of the gains our model predicts. Second, to the extent that our school

sensitivities are actually reflecting input compensation by parents and students rather than features

of the schools themselves, changing the allocation of teachers may involve considerable costs borne

by students and parents at schools estimated to be insensitive to teacher quality to minimize the

impact of the decrease in average teacher quality they face. We do not model such costs. Third, as

we discuss in Supplementary Section VII, the impact of the match between a teacher and a school

may not be fully captured by the quality/sensitivity complementarity in our model. If teachers

and schools are currently sorting on the basis of an additional match component, then reallocating

teachers may lower the average quality of matches along this unobservable dimension, offsetting
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the gains from putting good teachers in sensitive schools. Thus, rather than claiming to make

an accurate prediction of the gains from this extensive reallocation, this exercise simply aims to

determine whether the complementarities estimated in the model are large enough to have practical

relevance.

Our methodology is as follows. We first estimate the joint distribution of school average teacher

quality, school sensitivity to teacher quality, school quality, average teacher experience, and the av-

erage student background index.19 Assuming multivariate normality, we can take 400 draws from

this joint distribution to approximate the status quo. For each simulated school, we then simulate

10,000 test scores from 2,000 students taught by 50 teachers, using estimates of the variances of

the other inputs of the education production function.20 Then, we construct the efficient allocation

by reallocating the best 50 teachers to the most sensitive school, the next best 50 to the next most

sensitive school, and so on.

We find that the efficient allocation increases the mean test score by .094 student-level standard

deviations, and reduces the standard deviation in test scores by 4.6%. Furthermore, the average

test score among students in the bottom 10% of the student background index (Xitβ + Ỹiα) is

.175 test score standard deviations larger under the efficient allocation than under the status quo

allocation. By contrast, the average test score among the top 10% of the student background index

only increases by .029 standard deviations.

Note that the efficient allocation does substantially raise the variance in effective teacher quality

(γsµr) across students, but this effect on test score variance is outweighed by the fact that students

enjoying increased effective teacher quality tend to have low values of other inputs. Interestingly,

merely equalizing teacher quality by randomly assigning teachers to schools has almost no effect

relative to the status quo: the average test score increases by only .012 standard deviations, the

variance decreases by only half of a percent, and the average test score among the bottom 10% of

19. We estimate the covariances in a manner analogous to the estimates of true variances in Supplementary Section
VI. We calculate the covariance between raw estimates of parameters (say γ̂s and δ̂s), then subtract the average across
schools of the covariance of the sampling errors associated with γs and δs ( 1

S

∑
s cov(ε

γ
s , ε

δ
s)).

20. These include the variance in within-school teacher quality, the variance in the within-student and between-
student/within-school components of both the observable student background index and the unobservable idiosyncratic
error, and the variance in year-specific deviations from long run school quality and teacher quality.
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the student background index only increases by .028 standard deviations. This is a testament to the

fact that teaching quality is already surprisingly equitably distributed across schools.

Given the drastic nature of the efficient reallocation and the fairly small efficiency gain, these

counterfactual estimates suggest that while school-teacher complementarity is strong enough to

be meaningful, it is certainly not strong enough to make efficient use of teacher quality a policy

priority. However, one may be comforted that policies that attempt to reallocate teacher talent for

the sake of educational equality (such as bonuses for effective teachers who teach in poorer school

districts) would be likely to have the side effect of increasing average test scores.

X. TESTING FOR THE EXISTENCE OF A JOB LADDER

In order to gauge the possible bias introduced by directed mobility, we examine the extent to

which teacher mobility is balanced in our data. The simplest method is to calculate the fraction

of each school’s associated transferring teachers who transferred out (rather than in) and examine

the distribution across schools. This approach has a couple of potential drawbacks. First, when

new schools are created in a district, teachers may be involuntarily reallocated by the district to

the new school. Consequently, any new school in our sample will tend to have joiners make up

an overwhelming fraction of their transferrers, and other schools in the district will have leavers

make up a disproportionate fraction of their transferrers. However, such involuntary transferring is

unlikely to represent the kind of targeted mobility we are concerned about. Thus, when examining

the distribution of the fraction of transferrers who are leavers, we eliminate in-transfers to new

schools in their first year, and out-transfers to that school from any other school in that year. We

do the opposite for school closings.

A second potential issue is that when we only observe a small sample of transfers from each

school we should expect a sizeable number of schools to randomly have nearly all of their transfers

in or out, even if no job ladder exists. While such small-sample imbalance could still bias parameter

estimates, it will do so for a random selection of schools rather than for a particular type of school.

31



Thus, we also simulate two counterfactual densities of the fraction of transferrers who are

leavers at each school: one in which no job ladder exists, and a second in which a fairly strong job

ladder exists. In the first case, we fix the number of transferrers at the level observed in the data

for each of the 329 schools in our sample, and assume that each of those transferrers was equally

likely to be a leaver or a stayer. This would be the case in the absence of a job ladder, if schools’

teaching forces are remaining the same size over time. For each teacher, we take a draw, θr, from

a Bernoulli distribution with p = .5, and assign this teacher to be a leaver if θr = 1. We then

calculate the fraction of each school’s simulated transferrers who are leavers (denoted fs), and sort

the schools by this fraction fs to get {f 1, ..., f 329}. We repeat this 100 times to get f 1
b , ..., f

329
b for

b ∈ 1, ..., 100, and average across simulated samples to get f
1
, ..., f

329
.

The method for constructing the density is the same in the case of a fairly strong job ladder,

except that the draws are taken from a Bernoulli distribution with a school specific value of p, ps.

ps is uniformly distributed on the interval [.3, .7], so that some schools tend to be net senders (those

with ps > .5) and some tend to be net receivers (ps < .5). The most desirable and undesirable

schools will act as the sender 30 and 70 percent of the time, respectively.

Both counterfactual densities are plotted along with the true density of fs in Figure IV. The

first thing to notice is that even with small samples of transferrers at each school, mobility is fairly

balanced in the data: 56 percent of schools send between 40% and 60% of their transfers, and

82% send between 30% and 70% of their transfers. This suggests that for a large set of schools,

endogenous mobility may not introduce bias into estimates of their quality and average teacher

quality, relative to others in the balanced set.

Second, the true density and the ladder-less counterfactual density are nearly on top of each

other, while the counterfactual density associated with a moderately strong job ladder has con-

siderably fatter tails. A Kolmogorov-Smirnoff test cannot reject the hypothesis that the true and

ladder-less densities are identical, but overwhelmingly rejects the hypothesis that the true and lad-

dered densities are identical. This suggests that the transfer patterns we observe in the data are

consistent with the absence of a job ladder. While this method makes clear that much of the imbal-
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ance in mobility we observe need not reflect a systematic job ladder, it may overstate the amount of

mobility imbalance that we would expect in the absence of a job ladder. This could occur if, for ex-

ample, districts try to equalize experience across schools, so that within-district transfers are only

granted if an offsetting trade is available. In this case, modeling each transfer as an independent

Bernoulli draw will overpredict mobility imbalance.

Consequently, we turn to a second source of evidence for a job ladder, the observable char-

acteristics of schools who are net senders or receivers of transfers. If mobility imbalance is pure

small sample noise, then schools who are strong net senders should serve similar kinds of students

as schools who are strong net receivers. Thus, we calculate the average student background index

(Xictβ+ Ỹ iα) for schools in both the bottom decile and top decile of the distribution of the fraction

of transferrers leaving. The strongest net receivers (bottom decile) had students who were predicted

to score .05 test score standard deviations above average based only on their observable charac-

teristics, while the strongest net senders (top decile) had students who were predicted to score .22

test score standard deviations below average. This suggests that schools serving underprivileged

students are somewhat more likely to lose teachers to other schools.

Overall, we see a modest amount of mobility imbalance, and while much of it is attributable to

noise due to a relatively small number of transferrers at each school, mobility patterns do provide

some evidence of a job ladder, in which students serving disadvantaged students tend to be on

the bottom rungs. However, most transfers seem to be driven by factors other than the academic

readiness of schools’ students.
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XI. SUPPLEMENTARY FIGURES

FIGURE I: DISTRIBUTIONS OF STANDARDIZED SCORES BY SUBJECT-YEAR: PART 1
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FIGURE II: DISTRIBUTIONS OF STANDARDIZED SCORES BY SUBJECT-YEAR: PART 2

35



FIGURE III: DISTRIBUTIONS OF STANDARDIZED SCORES BY SUBJECT-YEAR: PART 3
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FIGURE IV: TESTING FOR THE EXISTENCE OF A JOB LADDER: A PLOT OF THE

DISTRIBUTION ACROSS

SCHOOLS OF THE FRACTION OF ASSOCIATED TRANSFERRING TEACHERS THAT ARE

LEAVERS (VS. ARRIVERS) USING SAMPLE DATA, SIMULATION WITH NO LADDER,
AND SIMULATION WITH LADDER
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