

Cornell University ILR School DigitalCommons@ILR

Labor Dynamics Institute

Centers, Institutes, Programs

2-24-2012

Presentation: Endogenous Mobility

John Abowd

Cornell University, John.Abowd@cornell.edu

Ian M. Schmutte *University of Georgia*

Follow this and additional works at: http://digitalcommons.ilr.cornell.edu/ldi

This Article is brought to you for free and open access by the Centers, Institutes, Programs at DigitalCommons@ILR. It has been accepted for inclusion in Labor Dynamics Institute by an authorized administrator of DigitalCommons@ILR. For more information, please contact hlmdigital@cornell.edu.

Presentation: Endogenous Mobility

Comments

Suggested Citation

Abowd, J., & Schmutte, I.M. (2012, February). *Presentation: Endogenous mobility*. Presented at the NBER Labor Statistics Program Meeting and the UC-Berkley Labor Economics Seminar of the Committee on National Statistics.

Required Publisher's Statement

Copyright held by authors.

Endogenous Mobility

John M. Abowd^{1,2} Ian M. Schmutte³

¹Cornell University

²Center for Economic Studies, U.S. Census Bureau

³University of Georgia

National Bureau of Economic Research Labor Studies Program Meeting February 24, 2012

Acknowledgements and Disclaimer

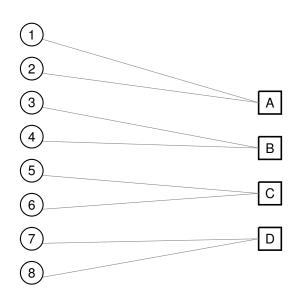
- This research was begun while Abowd was Distinguished Senior Research Fellow and Schmutte was RDC Administrator at the U.S.
 Census Bureau. Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential information is disclosed.
- This research uses data from the Census Bureau's Longitudinal Employer-Household Dynamics Program, which was partially supported by the following National Science Foundation Grants: SES-9978093, SES-0339191 and ITR-0427889; National Institute on Aging Grant AG018854; and grants from the Alfred P. Sloan Foundation. Abowd also acknowledges direct support from NSF Grants SES-0339191, CNS-0627680, SES-0922005, TC-1012593, and SES-1131848.

AKM in the Presence of Endogenous Mobility

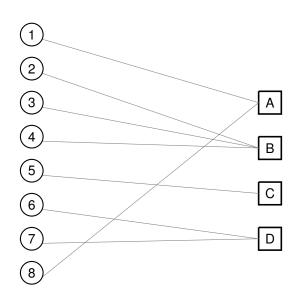
$$\ln y_{it} = X_{it}\beta + \theta_i + \psi_{J(i,t)} + \epsilon_{it}$$

- The Goal: "Rehabilitate" the Abowd-Kramarz-Margolis decomposition
- The Problem: Structural interpretations rely on the assumption that job mobility is exogenous
- The Approach: Use the realized mobility network for structural estimation

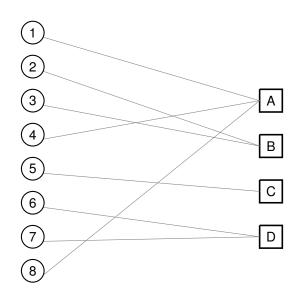
Realized Employment Network, t = 1



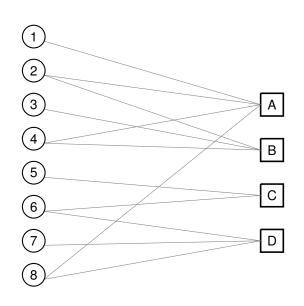
Realized Employment Network, t = 2



Realized Employment Network, t = 3



Realized Mobility Network



Estimating Individual and Employer Wage Effects

 The AKM (1999) specification for the wage determination equation with individual and employer heterogeneity

$$y = X\beta + D\theta + F\psi + \varepsilon$$

- where y is the [N × 1] stacked vector of log wage outcomes y_{it}, now sorted by t, then i.
- X is the [N × k] design matrix of observable individual and employer time-varying characteristics (the intercept is normally suppressed, with y and X measured as deviations from overall means).
- D is the $[N \times I]$ design matrix for the individual effects.
- F is the $[N \times J 1]$ design matrix for the employer effects (non-employment is suppressed).
- ε is the [N × 1] vector of statistical errors, whose properties
 will be elaborated below.

Estimating Individual and Employer Wage Effects II

• $\begin{bmatrix} \beta' & \theta' & \psi' \end{bmatrix}'$ are the unknown effects $[k \times 1]$, $[l \times 1]$, and $[J - 1 \times 1]$, resp., associated with each of the design matrices.

Moment Equation Framework

Solving the fixed-effects moment equations

$$\begin{bmatrix} X'X & X'D & X'F \\ D'X & D'D & D'F \\ F'X & F'D & F'F \end{bmatrix} \begin{bmatrix} \beta \\ \theta \\ \psi \end{bmatrix} = \begin{bmatrix} X'y \\ D'y \\ F'y \end{bmatrix}$$

(then, imposing identification) yields estimates of the components of heterogeneity that can be used as the basis for consistent estimation of functions of the individual and employer effects.

 Next, we show how this specification relates to network models.

Labor Markets as Bipartite Graphs

- Imagine a set of *I* individuals, *A(t)*, and a set of *J* employers, *E(t)* arranged in a bipartite graph where *A(t)* and *E(t)* are the two (disjoint) vertex (or node) sets
- There is a link between i ∈ A(t) and j ∈ E(t) if and only if i is employed by j at date t
- The totality of these links active at date t can be represented by the I × J adjacency matrix B(t)
- Assuming that we are modeling primary job holders, this adjacency matrix has a special form that will be critical in the modeling

Labor Markets as Bipartite Graphs

- The labor market bipartite graph summarized by B(t) evolves over time
- Since the employment relations between firms and workers can change at any time, it is reasonable to think of t as a continuous variable, sampled at intervals reflected in the data
- These considerations motivate adopting the dynamic network modeling tools to try to address the endogenous mobility issues

Individual Degree Distribution

- We distinguish primary employment from other forms of employment
- The primary employer at time t is the current employer if there is only one
- Otherwise, the primary employer is the one to whom the individual supplies the most labor market time
- This assumption puts constraints on the row degree distribution of B(t)

Individual Degree Distribution

- Specifically, assume that j = 0 refers to the non-employment state
- Including the column j = 0 ensures that every individual in the population at date t has exactly one "employer" although the (shadow) log wage outcome will be unobserved for individuals who are not employed at t
- Hence, $B(t) e_{J+1} = e_{J+1}$, where e_{J+1} is the $(J+1) \times 1$ column vector of 1s

Employer Degree Distribution

- Given this setup the column degree distribution, e'_IB(t), is the size distribution of employers (technically only the columns 1 to J are included in this distribution)
- The employer size distribution (including not-employed) is also the column degree distribution of this bipartite graph
- We note that the (very hard) problem of entry and exit of individuals and employers can be included in this formalism by including columns in B for potential and defunct employers and allowing for birth and death of individuals. For the moment, we are not going to worry about this complication

The Evolution of the Labor Market

- The existing data are snapshots of the labor market at points in time, $B(t_1), ..., B(t_T)$, where T is the total number of available time periods
- These adjacency matrices describe outcomes sampled at discrete points in time from the I × (J + 1) potential outcomes at each moment of time
- The objective is to use these snapshots of the labor market to test various assumptions about how the labor market evolves over time

Restating in Terms of the Adjacency Matrix Sequence

• Note that when the sort order is t then i we have:

$$F = \left[\begin{array}{c} B(1) \\ B(2) \\ \vdots \\ B(T) \end{array} \right]$$

where B(t) is the adjacency matrix from the bipartite labor market graph

 A direct strategy modeling endogenous mobility is to model the evolution of B(t)

Latent Heterogeneity Wage Decomposition and Mobility

- Workers, firms, and matches belong to latent heterogeneity classes
- a_i is the ability class of worker $i \in \{1, ..., I\}$.
- b_i is the productivity class of employer $j \in \{1, ..., J\}$.
- k_{ij} is the quality of the match between i and j
- Match quality depends on ability and productivity
- Earnings and mobility both depend on all three components
- Wages:

$$\mathbf{w}_{ijt} = \alpha + \mathbf{a}_i \theta + \mathbf{b}_j \psi + \mathbf{k}_{ij} \mu + \varepsilon_{ijt}$$

 Mobility: Probability of separation and transition depends on a, b and k.

Observed Data, Latent Data and Parameters

Observed Data

$$y_{it} = [w_{i J(i,t)t}, s_{it}, i, J(i,t)]$$
 for $i = 1, ..., I$ and $t = 1, ..., T$.

· Latent Data Vector:

$$Z = [a_1, \dots, a_I, b_1, \dots, b_J, k_{11}, k_{12}, \dots, k_{1J}, k_{21}, \dots, k_{IJ}]$$

Parameter Vector:

$$\rho^{T} = \left[\alpha, \theta^{T}, \psi^{T}, \mu^{T}, \sigma, \gamma, \delta, \pi_{a}, \pi_{b}, \pi_{k|ab}\right], \rho \in \Theta$$

Complete Data Likelihood Function

$$L(\rho|Y,Z) \propto \prod_{i=1}^{I} \left\{ \begin{array}{l} \prod\limits_{t=1}^{T} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\left(w_{i\,\mathrm{J}(i,t)t}-\alpha-a_{i}\theta-b_{\mathrm{J}(i,t)}\psi-k_{i\,\mathrm{J}(i,t)}\mu\right)^2}{2\sigma^2}\right] \\ \times \prod\limits_{t=1}^{T-1} \left[1-\gamma_{\left\langle a_{i}\right\rangle\left\langle b_{\mathrm{J}(i,t)}\right\rangle\left\langle k_{i\,\mathrm{J}(i,t)}\right\rangle}\right]^{1-s_{it}} \left[\gamma_{\left\langle a_{i}\right\rangle\left\langle b_{\mathrm{J}(i,t)}\right\rangle\left\langle k_{i\,\mathrm{J}(i,t)}\right\rangle}\right]^{s_{it}} \\ \times \prod\limits_{t=1}^{T-1} \left[\delta_{\left\langle b_{\mathrm{J}(i,t+1)}\right\rangle|\left\langle a_{i}\right\rangle\left\langle b_{\mathrm{J}(i,t)}\right\rangle\left\langle k_{i\,\mathrm{J}(i,t)}\right\rangle}\right]^{s_{it}} \\ \times \prod\limits_{i=1}^{I} \prod\limits_{j=1}^{L} \left[\prod\limits_{\ell=1}^{L} \prod\limits_{m=1}^{M} \prod\limits_{q=1}^{Q} \left(\pi_{a\ell}\right)^{a_{i\ell}} \left(\pi_{bm}\right)^{b_{jm}} \left(\pi_{q|\ell m}\right)^{k_{ijq}}\right] \end{array}$$

Gibbs Sampler Estimation of Posterior Distributions

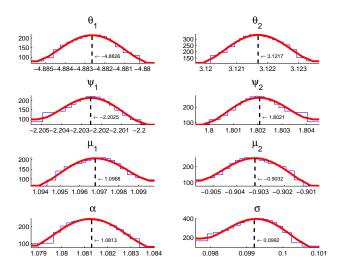
We use the Gibbs sampler to draw from $P(\rho, Z|Y)$

$$\begin{split} \sigma^{(1)} &\sim p\left(\sigma|\alpha^{(0)}, \theta^{(0)T}, \psi^{(0)T}, \mu^{(0)T}, \gamma^{(0)}, \delta^{(0)}, \pi_{a}^{(0)}, \pi_{b}^{(0)}, \pi_{k|ab}^{(0)}, Z^{(0)}, Y\right) \\ & \begin{bmatrix} \alpha \\ \theta \\ \psi \\ \mu \end{bmatrix}^{(1)} &\sim p\left(\begin{bmatrix} \alpha \\ \theta \\ \psi \\ \mu \end{bmatrix}|\gamma^{(0)}, \delta^{(0)}, \pi_{a}^{(0)}, \pi_{b}^{(0)}, \pi_{k|ab}^{(0)}, Z^{(0)}, \sigma^{(1)}, Y\right) \\ & \gamma^{(1)} &\sim p\left(\gamma|\delta^{(0)}, \pi_{a}^{(0)}, \pi_{b}^{(0)}, \pi_{k|ab}^{(0)}, Z^{(0)}, \alpha^{(1)}, \theta^{(1)T}, \psi^{(1)T}, \mu^{(1)T}, Y\right) \\ & & \vdots \\ & k_{l,l}^{(1)} &\sim p\left(k_{l,l}|\rho^{(1)}, d_{1}^{(1)}, \dots, d_{l}^{(1)}, b_{l}^{(1)}, \dots, b_{l}^{(1)}, k_{l,1}^{(1)}, \dots, k_{l-1}^{(1)}, Y\right) \end{split}$$

Simulation Study: Correlations

				AK	M			Gil	obs			Tru	е	
		у	θ	ψ	μ	ε	θ	ψ	μ	ε	θ	ψ	μ	ε
AKM	$\psi \ \mu \ \varepsilon$	1 .879 .393 .141 .024	1 069 000 0	1 000 0	1 0	1								
Gibbs	$egin{array}{c} heta \ \psi \ \mu \ arepsilon \end{array}$.867 .395 097 .025	.985 062 292 .001	066 .990 .183 002	.000 000 .607 .017	0 0 0 .960	1 065 404 000	1 .166 000	1 .001	1				
True	$egin{array}{c} heta \ \psi \ \mu \ arepsilon \end{array}$.867 .395 097 .051	.985 062 292 .020	066 .990 .183 .016	.000 000 .607 .017	0 0 0 .960	1 065 404 .020	065 1 .166 .018	404 .166 1 005	000 000 .001 .999	1 065 404 .020	1 .166 .018	1 005	1

Distribution of Wage Parameters: Simulated Data



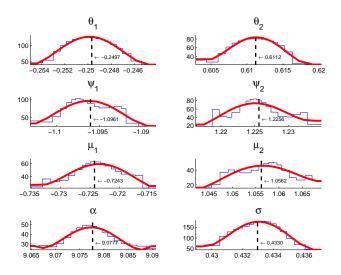
Data: Universe

- Matched employer-employee data from LEHD program
- All individuals employed in IL, IN, WI between 1999-2003.
- 16.9 million persons
- 719 thousand unique employers
- 39 million unique person-employer matches
- Summaries of AKM decomposition (as described in Abowd, et al. [2003]) provide starting values and benchmarks.

Data: Estimation Sample

- 0.25% simple random sample of individuals
- retain all matches and employers attached to those individuals
- 42,228 persons
- 39,458 employers
- 97,455 matches (including non-employment spells)
- 211,140 person-year observations

Distribution of Wage Parameters: LEHD Data



Posterior Distribution of Wage Equation Parameters: LEHD Data

Parameter	Mean	Std. Dev
θ_1	-0.2497	0.0032
θ_2	0.6112	0.0051
ψ_{1}	-1.0961	0.0044
ψ_{2}	1.2256	0.0055
μ_1	-0.7243	0.0066
μ_2	1.0562	0.0082
α	9.0777	0.0082
σ	0.4330	0.0024

Correlation Matrix of Wage Parameters: LEHD Data

				Ał	ΚM	Gibbs				
		у	θ	ψ	μ	ε	θ	ψ	μ	ε
AKM	$egin{array}{c} \mathbf{y} \\ heta \\ \psi \\ heta \\ arepsilon \end{array}$	1 0.5284 0.5683 0.4236 0.2345	1 0.0632 0.0335 0000	1 0182 0000	1 0.0000	1				
Gibbs	$egin{array}{c} heta \ \psi \ \mu \ arepsilon \end{array}$	0.3361 0.5486 02219 0.4989	0.2401 0.2037 0.0951 0.2288	0.1682 0.5599 2577 0.1498	0.0816 0.1179 0.1396 0.2677	0000 0000 0.0000 0.4703	1 0.0359 1202 0000	1 7236 .0002	1 0000	1

Regression of Gibbs on AKM: LEHD Data

	$ heta_{ extit{Gibbs}}$	ψ Gibbs	μ Gibbs	arepsilon Gibbs
θ_{AKM}	0.151	0.317	0.154	0.175
$\psi_{ extsf{AKM}}$	0.1441	1.492	529	0.164
μ AKM	0.072	0.332	0.266	0.307
$arepsilon_{m{A}m{K}m{M}}$	0.000	0.000	0.000	0.988
Constant	0.014	0.185	091	003

Separation Probabilities, γ : AKM and Structural Estimates

heta Type	ψ Type	μ Type	Separation Probability		
			AKM	Gibbs	
1	1	1	0.4127	0.6603	
1	1	2	0.0530	0.4418	
1	2	1	0.0169	0.2796	
1	2	2	0.0055	0.2506	
1	3	-	0.0552	0.3128	
2	1	1	0.7109	0.3814	
2	1	2	0.0448	0.1799	
2	2	1	0.0103	0.1923	
2	2	2	0.0123	0.2373	
2	3	-	0.1095	0.3179	

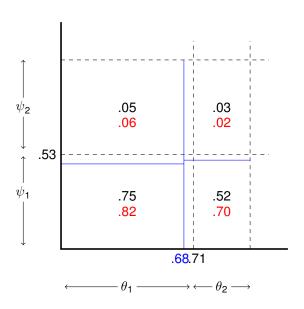
Destination Probabilities, δ : AKM and Structural Estimates

	Origin		Destination Employer Type						
θ Type	ψ Type	μ Type		AKM		Gibbs			
			1	2	_	1	2	_	
1	1	1	0.4103	0.1440	0.4457	0.4546	0.1129	0.4324	
1	1	2	0.4758	0.2057	0.3185	0.4929	0.2160	0.2911	
1	2	1	0.2315	0.3990	0.3695	0.2486	0.4681	0.2834	
1	2	2	0.2205	0.4791	0.3004	0.0910	0.2815	0.6275	
1	3	-	0.6912	0.3088	_	0.7247	0.2753	_	
2	1	1	0.5000	0.1988	0.3012	0.5079	0.0319	0.4602	
2	1	2	0.4929	0.2622	0.2449	0.5226	0.2324	0.2450	
2	2	1	0.2178	0.5139	0.2683	0.1120	0.6474	0.2406	
2	2	2	0.1660	0.5727	0.2613	0.1089	0.6242	0.2671	
2	3	-	0.6189	0.3811	_	0.7229	0.2770	_	

Structural Markov Transition Matrix: LEHD Data

<i>θ</i> Туре							
	ψ Type		1	1	2	2	3
		μ Type	1	2	1	2	-
1	1	1	0.4127	0.2272	0.0708	0.0038	0.2855
1	1	2	0.0530	0.7230	0.0906	0.0048	0.1286
1	2	1	0.0169	0.0526	0.8447	0.0066	0.0792
1	2	2	0.0055	0.0173	0.0670	0.7530	0.1572
1	3	-	0.0552	0.1715	0.0818	0.0043	0.6872
2	1	1	0.7109	0.1014	0.0118	0.0004	0.1755
2	1	2	0.0448	0.8693	0.0405	0.0013	0.0441
2	2	1	0.0103	0.0113	0.9283	0.0038	0.0463
2	2	2	0.0123	0.0135	0.1436	0.7672	0.0634
2	3	-	0.1095	0.1202	0.0854	0.0027	0.6822

Mobility and Selection



Conclusions

- Showed that endogenous mobility affects the AKM decomposition via the realized mobility network, which is the tool used for identification in that model
- Developed a complete posterior predictive distribution for incorporating endogenous mobility into the AKM wage decomposition
- The Markov transition matrix that describes the evolution of the network adjacency matrix reveals that the probability of transitions into better matches do depend on the worker type, firm type and match type in the current job
- Future work will refine the regression-based approach we used here for estimating the expected structural effect given the AKM wage components