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Differential Privacy Applications to
Bayesian and Linear Mixed Model Estimation

John M. Abowd,1 Matthew J. Schneider2 and Lars Vilhuber3

April 20, 2012

Abstract

We consider a particular maximum likelihood estimator (MLE) and a computationally-intensive Bayesian
method for differentially private estimation of the linear mixed-effects model (LMM) with normal random errors.
The LMM is important because it is used in small area estimation and detailed industry tabulations that present
significant challenges for confidentiality protection of the underlying data. The differentially private MLE performs
well compared to the regular MLE, and deteriorates as the protection increases for a problem in which the small-area
variation is at the county level. More dimensions of random effects are needed to adequately represent the time-
dimension of the data, and for these cases the differentially private MLE cannot be computed. The direct Bayesian
approach for the same model uses an informative, but reasonably diffuse, prior to compute the posterior predictive
distribution for the random effects. The differential privacy of this approach is estimated by direct computation of
the relevant odds ratios after deleting influential observations according to various criteria.

Index Terms

Differential Privacy; Statistical Disclosure Limitation; Privacy-preserving Datamining; Linear Mixed Models;
Quarterly Workforce Indicators; MLE; REML; EBLUP; Posterior Predictive Distribution; Random Effects.

I. INTRODUCTION

In this paper, we investigate two approaches for applying differential privacy to the estimation of Linear
Mixed Models (LMMs) and Bayesian Linear Mixed Models (BLMMs). The first approach constructs
an efficient, differentially private estimator that converges in distribution to the Maximum Likelihood
Estimator (MLE) by using a sub-sample and aggregate algorithm [23]. The second approach produces
differentially private linear predictors for regularized Empirical Risk Minimization (ERM) by perturbing
an objective function [6]. Our methods harmonize the two approaches using continuous data and make
appropriate methodological decisions where theory is missing. For example, the differentially private
linear predictors for ERM are classifiers and require a binary dependent variable, but we extend the
approach to a continuous but bounded dependent variable.

Statistical disclosure limitation (SDL) and privacy-preserving datamining (PPD) share the common goal
of permitting an analyst to draw valid inferences about the properties of confidential data without revealing
too much to the analyst about specific entities in the database. One approach to detailed tabulations is to
collect data on a sufficiently large number of entities so as to ensure that no published number is based
on only a few. As informal as this approach sounds, it lies at the heart of most of the disclosure limitation
protocols in use by governmental agencies around the world, and its formalization as identity risk control
(in SDL) and k-anonymity (in PPD) provides the basis for many rule-driven publication programs [8]. An
alternative approach to protecting the confidentiality of the data provided by the entities that inhabit the
levels of a detailed factor is the model-based approach. Model-based procedures combine the data from
all of the entities using a formal probability model. The estimate for a particular level of the detailed
factor is a function of all of the data [8], [10].
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2: Department of Statistical Science and Labor Dynamics Institute, Cornell University, Ithaca, USA: mjs533@cornell.edu
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The linear mixed-effects model is a canonical form of interest to many because it is the basis for applied
work in a wide variety of physical and social sciences. In addition, and perhaps of more interest in our
context, it is the statistical workhorse of small area estimation, which is an important part of many statistical
agencies’ publication programs [15], [20], [21]. Small area estimation and its counterpart in economic
data–detailed industrial tabulation–attempt to estimate regression-adjusted means for classifications that
have many levels and are sparsely represented in the underlying confidential data. In linear mixed-effects
models, the analyst is often interested in an estimate of the extent to which a particular entity (detailed
geographical unit or industry) differs from the average. That deviation is modeled as the realization of
a random process, and is estimated conditional on the actual values of a few entities with the particular
level of the detailed factor under study.

II. DATA SOURCES

We use the Census Bureau’s Quarterly Workforce Indicators (QWI) as our application of LMM estima-
tion to small area and industrial detail data protection. (See [1] and [2] for details on the data creation.)
The QWI data contain employment counts, accessions, separations, job flows, earnings, and explanatory
variables of interest–namely, industry, state, county (within state), and date (1990:Q2 to 2010:Q1). The
dependent variables of interest here are the job creation rate (JCR), job destruction rate (JDR), accession
rate (AR), and separation rate (SR). We model rates instead of levels because the differentially private
estimators we consider require a bounded parameter space, and these rates are naturally bounded, which
effectively bounds the parameter space for LMMs. Industry, state, and county are categorical variables.
Time is an integer-valued variable measured in quarters.

The four rates are defined in the establishment-level micro-data as AR = A
Ē

, JCR ≡ max
(
0, E−B

Ē

)
,

JDR ≡ max(0, B−E
Ē

), and SR ≡ S
Ē
, where Ē ≡ E+B

2
, E is end-of-quarter employment, B is beginning-

of-quarter employment, A is accessions within the quarter, S is separations within quarter. The identity
JCR − JDR = AR − SR holds for all entities and time periods [1]. In this paper we use detailed
aggregates published from the micro-data. We are thus treating the detailed publication data as proxies
for the micro-data as an experiment in statistical disclosure limitation methods. Only JCR, JDR, and
AR are modeled since SR can be calculated from the identity. Note that JCR and JDR ∈ (0, 2) but
AR, SR ∈ (0,∞) by assuming B,E,A > 0. However, AR and SR are empirically not very large unless
an establishment j hires or separates many more employees in a quarter than it has at the beginning and
end of the quarter. The dependent variables of interest are specified as rates in the LMM specified in
Section III-B and modeled accordingly. Categorical variables take the values of 0 or 1 in the X or Z
design matrices defined below and their respective fixed effects and random effects, β and u, are therefore
bounded by the range of the dependent variable.

III. MODELS SPECIFICATION

A. Linear Mixed Model
1) Background: One purpose of the classical Linear Model (LM) is to estimate the numerical relations

between dependent and independent variables. The two requirements of the LM are: first, that the average
value of the dependent variable, JCR, is a linear combination of known data (e.g., industry and time) and
other unknown constants (β, fixed effects) and second, that the dependent variable is normally distributed
with a mean at the value of the linear combination. When some of the parameters of the LM are treated as
realizations of random variables instead of unknown constants, the model is called a Linear Mixed Model
(LMM). In other words, when the mean of JCR is a linear combination of constant terms and random
terms which are not constants, the model is a LMM [16]. In our case, some of the random variables are
county random effects and we assume that they come from a random sample of counties from the entire
population of counties. The LMM allows for JCR to depend on the county and we expect each county’s
random effect to be 0 with uncertainty according to a normal distribution. However, for this application,
we are not only interested in estimating the variance of county effects (i.e., how much JCR varies due
to particular counties alone), but also in the particular level of the realized county random effect, ûc.
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2) Linear Mixed Model Specification: Our statistical model is specified as follows:

y = Xβ + Zu+ ξ (1)

where y (N × 1) consists of elements yjsct, the value of one of the dependent variables (JCR, JDR, AR) .
The subscript j is industry (20), s is state (48), c is unique county within state (3, 111), t is time (quarters
from 1990:2 to 2010:1), and N is the total number of observations. X is the (N × 21) design matrix
for the fixed effects (industry and the time trend). Z is the (N × 3, 159) design matrix for the random
effects of state and county (within state). Finally, ξ is the (N × 1) observational random effect across
all observations and is assumed independent and identically distributed. β̂ is the vector of maximum
likelihood estimates (MLEs) and û is the vector of empirical best linear unbiased predictors (EBLUPs).
Random effects are assumed independent with a constant variance for each state, county, and observation.

The mixed-effects likelihood function is constructed by assuming

ξ ∼ N(0, σ2
ξIN) = N(0, R), R = σ2

ξIN

us ∼ N(0, σ2
sI48), uc ∼ N(0, σ2

cI3111)

u = (uTs , u
T
c )T ∼ N(0, G)

G =

[
σ2
sI48 0
0 σ2

cI3111

]
These assumptions imply

E [y|X,Z] = Xβ, y ∼ N(Xβ,ZGZT +R) = N(Xβ, V )

and given random effects due to state and county:

E [y|X,Z, u] = Xβ + Zu, (y|u) ∼ N(Xβ + Zu, σ2
ξIN)

which implies equation (1) .
Henderson [14] shows that maximizing joint density of y and u, yields the MLEs β̂ and EBLUPs û

that solve:
XTR−1Xβ̂ +XTR−1Zû = XTR−1y

ZTR−1Xβ̂ + ZTR−1Zû+G−1û = ZTR−1y

Additionally, we are interested in estimating the three variances, σ2
ξ , σ2

s , and σ2
c for statistical inference

and the generation of the EBLUPs.
3) Maximum Likelihood and Restricted Maximum Likelihood Estimates: To calculate all estimates of

interest, we use the lmer() function from the R package lme4, which maximizes the restricted log-
likelihood, called REML [5] and takes advantage of sparse matrix computations [3]. Table I shows a
summary of the REML estimates produced for our model. Initial global estimates are calculated from
Table I independently for each of the three modeled rates (JCR, JDR, and AR) using the original data
(about 2.4 million rows). These estimates (β̂global,ûglobal,σ̂global) act as a benchmark for the differentially
private methods in this paper that use sub-sampling and Laplace noise (β̂DPε ,ûDPε ,σ̂DPε). Section IV
provides more details.

Estimates of the LMM parameters are produced by minimizing the negative log-likelihood (MLE) or
restricted log-likelihood (REML). Although there is no closed form solution for the MLE or REML of the
complete parameter vector

(
β,G/σ2

ξ , σ
2
ξ

)
[4], [7], Bates and Debroy [4] show that intermediate REML

calculations for the parameters in G/σ2
ξ can be expressed using a profiled log-restricted likelihood that

only depends on a G/σ2
ξ and not

(
β, σ2

ξ

)
.
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Estimate Dimension Description
β̂1,...,β̂20 20 Industry (n) MLEs
β̂21 1 Quarter (t) MLE
û1,...,û48 48 State (s) BLUPs
û49,...,û49+3110 3111 County (c) BLUPs
σ̂2
ξ 1 Residual Variance
σ̂2
s 1 State (s) Variance
σ̂2
c 1 County (c) Variance

TABLE I
ESTIMATE DESCRIPTIONS

B. Bayesian Linear Mixed Model
1) Background: Bayesian estimation of the LMM permits us to incorporate both a priori knowledge

of the parameters, β, σ2
uc, σ

2
ξ , and information from the data, (y,X, Z), into the fitting of the BLMM to

generate samples from the posterior distribution of β, σ2
uc, σ

2
ξ , and u. We set the prior distribution of β, σ2

uc,
and σ2

ξ to their feasible ranges and use the samples from the posterior distributions to directly analyze the
privacy properties of the fixed effects, variance components, and estimated random effects. We compare
the posterior draws of the sensitive county random effects, u, from a BLMM fit with all observations
(benchmark fit) to BLMMs fit by deleting one influential observation at a time. We then calculate the
maximal differential privacy risk over all the single-row deletion experiments. This procedure produces
an empirical DPε.

2) Bayesian Linear Mixed Model Specification: Our BLMM model is specified as follows:

y = Xβ + Zu+ ξ

R = σ2
ξI,G = σ2

ucI

ξ ∼ N(0, σ2
ξIN) = N(0, R), R = σ2

ξIN

u ∼ N(0, σ2
ucI3111) = N(0, G)

σ2
ξ ∼ IW (V, v), σ2

uc ∼ IW (V, v), β ∼MVN(µ,Σ)

where y (N × 1) consists of elements yjct, the value of one of the dependent variables (JCR, JDR,AR) .
The subscript j is industry (20), c is unique county (3, 111), t is lagged quarterly rates(4× 1) , and N
is the total number of observations. X is the (N × 24) design matrix for the fixed effects (industry and
lagged rates). Z is the (N × 3, 111) design matrix for the random effects county.

For the BLMM we consider only unique county random effects and discard state random effects; hence
the estimated county effects are actually the sum of the state and county(within state) effects. The prior
distributions of the variance components are multivariate Inverse-Wishart distributions (V, υ) that reduce
to Inverse-Gamma distributions when V is a scalar, as above. Some advantages of the Inverse-Wishart
and Inverse-Gamma distributions are that their random variables are always real-valued positive definite
matrices and positive reals, respectively, and they are the conjugate prior distributions for the multivariate
normal and univariate normal distributions, respectively [11]. The prior distribution of the fixed effects is
a multivariate normal distribution (µ,Σ) that allows for more complex covariance structures. Our model is
similar to the LMM in Section IV except for the additional covariates that model the time structure more
accurately and the use of Markov Chain Monte Carlo (MCMC) sampling instead of REML estimation.
The outputs of MCMC are draws from the posterior distribution of the parameters and the random effects
while the outputs of REML are point estimates. MCMC from BLMMs gives us greater flexibility in
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analyzing the tails of the posterior distribution of the parameters and random effects for differential
privacy applications.

3) Posterior Distribution: Ten thousand samples of the parameters, β, σ2
uc, σ

2
ξ , and u, are drawn from

their posterior distributions after burn-in. Then, posterior samples from the distribution of uc are generated
from Pr(uc|y,X, Z, β, σ2

ξ , σ
2
uc) for every county c. See Section V for further details.

IV. DIFFERENTIALLY PRIVATE ESTIMATION VIA SUB-SAMPLING

We use LMMs and Smith’s [23] differential privacy via random sub-sampling method to compute a
differentially private MLE from our data by means of partitioning the complete sample into thousands of
disjoint LMMs that share the same parameter vector and random effects, although only a subset of the
random effects appear in any given sub-sample. The QWI data are used to form the matrices X and Z,
and the vector y, which we use in this algorithm. Although we are using public data, the exercise nicely
simulates protecting the confidential entity data since we are trying to summarize the characteristics of a
large number of states, counties, industries, and time periods. We have not yet focused on the time effects
because we are concerned with showing the effects of SDL or PPD on the small area estimates (counties
within state). The time effects are given further consideration in Section V with the BLMMs. We apply
Smith’s method of differential privacy via sub-sampling [17], [23] directly to the full data matrix from
the QWI.

A. Sub-sampling
Divide the input (y,X, Z) into k disjoint blocks, i.e. construct sub-samples by rows, B1, ..., B(i), ..., Bk

of nk = bN
k
c points each where B(i) denotes the ith disjoint subset and N is the total number of

observations. The complete data set for each of the three models is denoted by (y,X, Z) =
⋃

(y1, X1, Z1),
..., (y(i), X(i), Z(i)), ..., (yn, Xn, Zn). Using lmer(), calculate k sets of estimates from Table I using the
data for each block only.

B. Bias-corrected β̂(i) and û(i)

McCulloch and Searle [16] note that the solutions to Henderson’s equations are β̂ = (XTV −1X)−1XTV −1y
and BLUP = GZTV −1(y−Xβ̂), where V = ZGZT +R. Both of these equations are functions of at least
one variance component of the model within R or G, which are not known, and must be estimated. Since
the variance components are estimated, our estimate of u is EBLUP (u) = û = ĜZT V̂ −1(y−Xβ̂). Prasad
and Rao [21] state that the resulting two-stage estimator is unbiased if the expectation of the estimator is
finite, the elements of the estimated variance components are even functions of y and translation-invariant,
and the distributions of u and ξ are both symmetric. Our empirical results suggest that our EBLUPs are
more biased as we increase the number of sub-samples k. Additionally, the estimated variance components
become larger as k increased. We implemented a bias-corrected version β̂(i) and û(i) for the differentially
private estimate generation routine.

The bias-corrected estimates are produced as follows. Calculate β̂global, ûglobal, σ̂2global
ξ , σ̂2global

s , and
σ̂

2global
uc for all of the data when k = 1. For each block (i), subtract β̂global and ûglobal from β̂(i) and
û(i), respectively. Call these β̂bc(i) and ûbc(i). For each block (i), subtract σ̂2global

ξ , σ̂2global
s , and σ̂

2global
uc from

σ̂2
ξ (i), σ̂2

s (i), and σ̂2
uc(i), respectively. Call these σ̂2bc

ξ (i), σ̂2bc
s (i), and σ̂2bc

uc (i). For each block (i), regress (β̂bc(i),
ûbc(i))

1 on σ̂2bc
ξ (i), σ̂2bc

s (i), and σ̂2bc
uc (i) and obtain estimates γ̂ξ(i), γ̂s(i), and γ̂uc(i) for each regression. For

each block (i), obtain fitted values of β̂bc(i) and ûbc(i). Call them β̂bc∗(i) , ûbc∗(i) . Obtain the bias-corrected β̂(i)’s
and û(i)’s to use in the differentially private estimate generation routine by setting β̂(i) = β̂(i) − β̂bc∗(i) and
û(i) = û(i) − ûbc∗(i) .

1Number of regressions for block (i) is equal to the number of estimated β’s and u’s in (i)



6

C. Averaging Sub-samples as the Aggregation Function
Average the estimates over k blocks:

β̂∗∗ =

k∑
i=1

β̂(i)

k
, û∗∗ =

k∑
i=1

û(i)

k
,

σ̂2∗∗
s =

k∑
i=1

σ̂2
s (i)

k
, σ̂2∗∗

c =

k∑
i=1

σ̂2
c (i)

k
,

and

σ̂2∗∗
ξ =

k∑
i=1

σ̂2
ξ (i)

k
Next, draw Rε

β , Rε
uand Rε

σfrom independent Laplace distributions, as a function of the differential privacy
parameter ε, where the Laplace scale parameters b = (b1, b2, b3) are Λβ

kε
, Λu
kε

, and Λσ
kε

, respectively, and

σ̂ = (
√
σ̂2∗∗
s ,

√
σ̂2∗∗
c ,

√
σ̂2∗∗
ξ ). The values Λβ , Λu, and Λσ are the global sensitivities [23] or the maximum

ranges of the parameters β, µ, and σ, respectively, as shown in Table II. Output β̂DPε = Rε
β + β̂∗∗,

ûDPε = Rε
u + û∗∗and σ̂DPεξ = Rε

σ + σ̂∗∗as the differentially private estimates with protection ε.
In the process of sub-sampling disjoint subsets from over 2.4 million observations or rows in the matrices

X and Z, individual subsets could contain between 271 (for ε = 1) and 500 (for ε = 4.6) observations
where the sample size of the individual subset is nk =

⌊
N
k

⌋
=
⌊(

Nε
Λ

)2/5
⌋

as derived in Section IV-D. For
large values of k, it is very likely that many of the sub-samples do not have entries for some industries,
many states, or thousands of counties in the X(i)or Z(i) matrices due to chance or the limited number of
rows (nk). Consequently, many of the their respective parameters cannot not be estimated. In such cases,
we treat these non-estimable β̂(i) and û(i) as missing, and do not use them in our averaged estimates.
In cases with even smaller individual subsets (e.g., when k = 16, 000, nk = 151), it is possible that the
mixed model is not estimable. Therefore, we must keep k at a reasonable level and in Section V, we use
k = 8, 945 (ε = 1) through k = 4, 858 (ε = 4.6).

County effects were considered a random effect since there were 3,111 unique counties corresponding
to different states and each sub-sample contained a random subset of counties from the universe within
that state. State effects were also considered random, but always had less than one-fourth of the states
missing observations in the Z(i). For k = 8, 945 in all sub-samples, industry had at most 1 or 2 industries
missing from X , state had between 0 and 11 states missing (an average of 4 missing) from Z, and county
had between 2,863 and 2,892 counties missing from Z. In cases where there were many unique counties
missing, the estimated variance of the random effect due to unique county, σ̂2

c , was often zero due to the
lack of repeated observations per unique county. Low prevalence categories in industries, such as industry
92 (Public Administration), had many fewer observations than others and, consequently, had higher ranges
of estimated coefficients from sub-sample to sub-sample.

The Laplace scale parameters, b, are dependent on Λ, ε, and k. By fixing k and Λ, the resulting Laplace
scale parameters become a function of ε alone, which we tried to vary from 0.1 to 4.6, but values less
than unity for ε were not estimable.

The Λβ , Λu, and Λσ are maximum ranges in the corresponding parameters of β, u, and σ as shown in
Table II. For JCR and JDR, all three components of σ̂ are bounded since standard deviations should be
a maximum of 0.5 for rates ∈ (0, 2). So, we set Λσto 0.5. β̂ and û depend on the scale of the data, which
in our case contains only 0 and 1 except for the time trend variable. In such binary cases and disregarding
any interactions, we set Λβ and Λu to be 2. In simulations, the quarter estimate, β̂21, always had a very
low range across sub-samples (less than .004), so Λβ21was set to .01 because 2 would be too large for
the scale of the time trend variable (values of 22 to 101).
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For AR, the bounds need to be larger to account for the empirical range of AR ∈ (0, 385), which
is much too large for meaningful statistical inference when this range is used to set the Laplace scale
parameter for the differentially private estimates. We calculate empirical ranges of the parameter estimates
over different values of k for all rates in Table II. When looking at the 0% to 99.9% quantile of AR, the
rates are ∈ (0, 2.57). Consequently, Λσwas set to 0.75, Λβ and Λuwere set to 3, and Λ21was set to 0.01
(from empirical simulation). Table II shows the maximum ranges of estimates for JCR and AR over
k = 8, 945 sub-samples, which always had larger maximum ranges than smaller k in our simulations.

Estimate JCR Max Range JCR Λ AR Max Range
β̂1,...,β̂20 2.49 2.0 49.6
β̂21 0.003 0.01 0.15
û1,...,û48 1.67 2.0 9.6
û49,...,û3161 2.04 2.0 374.5
σ̂2
ξ 0.20 0.5 5.5
σ̂2
s 0.26 0.5 1.6
σ̂2
c 0.19 0.5 24.1

TABLE II
MAXIMUM EMPIRICAL RANGES

D. Number of Sub-samples
Smith [23] shows that the maximum number of sub-samples to be considered is k = n2/3 to get a

sufficiently small bias, and the optimal number of sub-samples is k∗ = n3/5Λ2/5

ε2/5
to get an asymptotic

relative error that tends to 1. Setting Λβ and Λu equal to the maximum of all estimate ranges for the
JCR and JDR models implies an optimal k∗of 8941

ε
. As ε ranges from 0.1 to 4.6, the optimal k∗ranges

from about 22,470 to 4,858. Results are presented using ε ∈ (1, 2, 3, 4, 4.6) . A value of k∗ > 9, 000 is
not feasible within the REML computation because the low sample size (nk = 151) does not permit any
estimation at all.

E. Differentially Private Fitted Values
The fitted values of our mixed model are linear combinations of the rows of X and Z and the

differentially private estimates with protection ε. X and Z are sparse matrices because the columns
are categorical variables and any given row is identified by an industry, unique county, and quarter. Any
fitted value is the sum of three differentially private estimates with protection ε and a quarter, t, times
the differentially private trend estimate, βDPε21 , with protection ε. Ignoring the differentially private trend
estimate, βDPε21 , and assuming each row can only change by industry and unique county, we provide a
proof for differentially private fitted values that builds on Smith’s proof [23].2

Lemma 1: For any choice of the number of sub-samples k, a fitted value for any row is Cε-differentially
private where C is 2, the assumed number of non-zero entries in X and Z for an added or deleted row r.

Proof: Given fixed matrices of X and Z, consider adding or deleting a row r to obtain neighbor
matrices X ′ and Z ′ that differ from X and Z by only by one observation or row. At most, only one of
the sub-samples B(i) = (y(i), X(i), Z(i)) can include or exclude row r. The maximum that the components
of β̂(i) and û(i) can change with or without row r is by their global sensitivities, Λβ and Λu. Therefore,

the most β̂∗∗ =

k∑
i=1

β̂(i)

k
and û∗∗ =

k∑
i=1

û(i)

k
can change are Λβ

k
and Λu

k
, respectively. By Smith [23], this

results in the Laplace random variables β̂DPε = Rε
β + β̂∗∗ and ûDPε = Rε

u + û∗∗ each being ε-differentially
private where the Laplace noises were defined in Section IV-C. Define an arbitrary fitted value of the

2tΛβ21 ≤ 101(.01) = 1.01 So, tΛβ21 < Λβ and by using the Laplace scale parameter, Rεβ , for β21, βDPε
21 is also ε-differentially private.
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vector ŷDPCε = Xβ̂DPε + ZûDPε as ŷDPcεa . ŷDPcεa is a function of two ε-differentially private estimators
without using additional confidential data (X and Z are not confidential) and therefore, 2ε-differentially
private.

Note that the proof can be generalized to different allocations of privacy, such as two estimators that
are 0.1ε-differentially private and 0.9ε-differentially private by changing the Laplace scale parameters.
The result is that a fitted value for any row would be (0.1 + 0.9)ε-differentially private or ε-differentially
private. We generalize the proof to three differentially private estimators for the industry effect, trend
effect, and unique county EBLUP. All figures use a total of ε-differential privacy with varying levels of
the privacy budget for β and u, and an allocation of 2% of ε for β21. Additionally, we did 30 random
simulations of differentially private fitted values and averaged the correlation results in Figures 2,3,4,5,6,
and 7.

V. DIFFERENTIALLY PRIVATE ESTIMATION VIA EXPECTED RISK MINIMIZATION

We use BLMMs for Chaudhuri, Monteleoni, and Sarwate’s [6] approach of differential privacy and
relate the posterior distribution of the BLMM to ERM. Their approach shows that ε-differential privacy
can be obtained by perturbing an objective function, Jpriv, to obtain an efficient, differentially private
approximation for the predictors, fpriv, of regularized ERM.

fpriv = arg min Jpriv (f ,D) +
1

2
∆ ‖f‖2 = arg min[

1

n

n∑
i=1

` (f (xi) ,yi) + ΛN (f) +
1

n
bT f ] +

1

2
∆ ‖f‖2

fpriv, or more commonly known as regression coefficients (β) in Generalized Linear Models such as the
logistic regression, is obtained by minimizing a loss function and a regularizer [6]. One major difference
between their approach and ours is that the objective perturbation algorithm relies on classifiers for binary
dependent data and our applications has continuous dependent variables. Thus, the original Cahudhuri et
al. algorithm contains natural parameter bounds and frees their privacy parameter from dependence on the
sensitivity of the classification algorithm. In our application, we use bounded continuous rates and define
an informative prior distribution that bounds the parameters in the posterior distribution from which we
calculate the empirical level of ε.

We note that regularized risk minimization is equivalent to maximum a posteriori estimation and

arg min[
1

n

n∑
i=1

` (f (xi) ,yi) + ΛN (f)] = arg min[Empirical Risk + Regularizer]

= arg min[− logL()− log p(f)]

= arg max [ log (L()× p(f))]
= arg max [L()× p(f)]
= arg max [posterior]

We proceed in the Bayesian fashion by setting priors on our fixed effects and variance components.
Then, we fit the complete-data model. Next we remove influential observations one at a time in order
to estimate the effective ε-differential privacy of the complete-data procedure. We analyze effects on the
posterior distribution of the complete set of uc, the county random effects because these are much more
sensitive to a breach in privacy than the fixed effects or variance components.

A. Prior Specification
We use the multivariate Inverse-Wishart distributions (V, υ) and multivariate normal distribution (µ,Σ).

To test the feasibility of differential privacy for the BLMM we consider the simplest case of such
distributions, although we are not limited to such. We use the univariate Inverse-Wishart, which becomes
an Inverse-Gamma (υ

2
, υV

2
) distribution with mean υV

ν−2
and variance v2V 2

(υ−2)2(υ
2
−2)

for the two random effects.
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We also set the prior of our fixed effects at µ = 0 and Σ ∝ I causing the multivariate normal distribution
to produce independently and identically distributed univariate normal distributions with mean zero and
constant variance a priori. In order for our priors to depend on only one parameter, υ, the degrees of
freedom, we set V equal to a constant. Our benchmark and confidential prior distribution, p0, is diffuse
with the bounds being set as close as possible to the feasible ranges of the parameters β ∈ (−2, 2) and
σ2
uc, σ

2
ξ ∈ (0, .25). When setting V = .104 and υ = 12, the prior mean and standard deviation of σ2

uc

and σ2
ξ are .125 and .0625, which we define as the benchmark prior, p0, that spans the feasible range

of our variance components. We also set Σ = 162 v2V 2

(υ−2)2(υ
2
−2)

I to ensure the standard deviations of our
benchmark univariate normal priors are 1, span the feasible range of β, and scale with the priors of σ2

uc

and σ2
ξ . This gives the following BLMM:

Y = Xβ + Zu+ ξ

R = σ2
ξI,G = σ2

ucI

p = (σ2
ξ ∼ IG(

υ

2
,
vV

2
), σ2

uc ∼ IG(
υ

2
,
vV

2
), β ∼MVN(0, 162 v2V 2

(υ − 2)2(υ
2
− 2)

I)).

B. Bayesian Computation and ε-Differential Privacy
We use the R package MCMCglmm to fit the BLMM through MCMC simulation. MCMCglmm uses C++,

samples all location parameters in a single block, uses CSparse C libraries, and is 40 times faster than
Winbugs [12]. Even with these advantages, for our data it takes about 10 hours to run 20,000 MCMC
iterations with a 10,000 iteration burn-in and thinning interval of 5. To incorporate the intuitive notion of
differential privacy for the sensitive county random effects, we remove one observation from our data set
and rerun the BLMM to generate the new posterior distribution of u. We use influence diagnostics geared
for the LMM to choose those observations that require closer examination for the BLMM.

1) Influential Observations: We delete observations i that are most influential on the EBLUPs of our
LMM under REML estimation and later fit a separate BLMM for each of those observations deletions.
Traditional influence diagnostics for the LM are not completely transferable to the LMM because β̂ and û
are functions of the estimated variance components, σ2

ξ and σ2
uc. For example, the residuals of the LMM do

not have to sum to zero and can sometimes produce negative values of leverage located on the diagonals
of the “hat matrix,” H = X(X ′V̂ −1X)−1X ′V̂ −1 [22]. Since the LMM should be refit when deleting each
observation i to know exactly how estimates change, we incorporate several notions from the influence
diagnostic literature to select observations that are influential on the entire model or specific EBLUPs.

Define the marginal residuals given the fixed effects as yi − x′iβ̂ and the conditional residuals given
the EBLUPs as ri = yi − x′iβ̂ − z′iû. Assuming the variability of β̂ is negligible given the sample size
of our data, we calculate the Pearson residuals given the conditional variances as rpi = ri√

V ar(Yi|u)
= ri

σ2
ξ

which in our LMM is simply proportional to ri due to the simple covariance structure and conditioning on
the EBLUPs. Schonberger suggests calculating conditional residuals and conditional Pearson residuals for
influence diagnostics in the LMM [22]. Nobre and Singer [18] suggest looking at a standardized version
of the conditional residuals by dividing rpi by a function of the joint leverage of the fixed and random
effects for detecting the presence of outlying observations. They also reference Pinheiro and Bates [19]
who suggest looking at extreme values of û for detecting the presence of outlying EBLUPs.

We selected 32 influential observations to examine. First, we selected 14 observations with the most
extreme positive or negative rpi values. Second, since our design matrix, Z, is unbalanced with five counties
containing fewer than 15 observations, we selected 10 observations with the minimum and maximum rpi
from each of those counties. Finally, we selected eight observations with the minimum and maximum rpi
from four counties with extreme values of û.
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2) Differential Privacy of the Realizations of County Random Effects: We create a methodology for
calculating ε-differential privacy for continuous data using the posterior distribution of u from our BLMMs.
First, we generate 10,000 samples from the posterior distribution of β, u, σ2

uc,and σ2
ξ from our benchmark

model with prior p0 and all observations (after discarding the 10,000 burn-in samples). Then, we remove
influential observation i, refit our model with the same prior p0, and also generate 10,000 posterior samples
(again, after discarding the 10,000 burn-in samples). We estimate the changes for the tails of the posterior
distribution of u between the benchmark model and a model missing an influential observation.

For our models let

D ≡ (y,X, Z), entire data set
and D˜i ≡ (y˜i, X˜i, Z˜i), the data set without observation i.

Define the posterior odds as P0(uc|D˜i)
P0(uc|D)

and the prior odds as P0(uc)
P0(uc)

for all county-effect posterior distribu-
tions of the random effect uc.3 Bounding the maximum and minimum of the posterior odds ratio

M1 ≡ max
i,c

 P0(uc|D˜i)
P0(uc|D)

Pm(uc)
P0(uc)

 = max
i,c

[
P0(D˜i|uc)
P0(D|uc)

]
and

M2 ≡ min
i,c

 P0(uc|D˜i)
P0(uc|D)

Pm(uc)
P0(uc)

 = min
i,c

[
P0(D˜i|uc)
P0(D|uc)

]
is equivalent to the requirement for ε−differential privacy by setting ε = max (|lnM1| , |lnM2|) [9]. Since
the prior odds were defined unconditional on the deleted observation i, we assume that the prior odds
ratio is 1, and we only need to focus on the posterior odds to determine ε.

One method of calculating the posterior odds is to fit a kernel density estimator of the posterior samples
of u, and then evaluate these ratios over narrow bin widths. We found this method to be overly sensitive to
posterior samples in the tails of the posterior distribution. Instead, we approximate max (|lnM1| , |lnM2|)
by comparing the number of tail occurrences between the benchmark model and models missing an
influential observation using a discretized posterior with 20 bins. Given 10,000 posterior samples of each
uc|D from the benchmark model, we create 20 bins of 500 samples corresponding to the five percent
quantiles of the benchmark posterior samples. Then, for each model with deleted observation i, we count
the number of posterior samples, ni,c,b of uc|D˜i within each of the benchmark bins. Over all models
without i, county random effects (c = 1, 2, ..., 3111), and bins (b = 1, 2, ..., 20) compute ni,c,b

500
and set

ε = max (|lnM1| , |lnM2|) where M1 = max
i,c,b

[ni,c,b
500

]
and M2 = min

i,c,b

[ni,c,b
500

]
.

3) Convergence: We monitored convergence for the benchmark model by performing two iterative sim-
ulations (with dispersed initial conditions) and evaluating the Gelman and Rubin convergence diagnostic.
Each simulation was run for 10,000 iterations after a burn-in of 10,000 samples. The Gelman and Rubin
convergence diagnostic measures the between-sequence variance, B, and the within-sequence variance, W ,

for two or more iterative sequences. It outputs a potential scale reduction factor,
√

n−1
n
W+ 1

n
B

W
, that declines

to 1 as the number of posterior samples, n, goes to infinity [11]. Gelman, Carlin, Stern, and Rubin note
that for most examples, scale reduction factors below 1.1 are acceptable. The upper confidence limits of
the potential scale reduction factors for our 3,111 county-wide random effects, two variance components,
and 24 fixed effects were always between 0.99990 and 1.0047 except for county random effect u1460 at
1.2853 which only had 58 observations. We examined the trace plots for county random effect 1460 in
Figure 1 below and found no issues with convergence.

3We discretize this the posterior distribution of uc to make these probability statements estimable.
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Fig. 1. Trace Plots of County 1460

VI. RESULTS

A. Linear Mixed Models
We produced R − U (Risk-Utility) curves or R − U confidentiality maps that examine the trade-off

between ε (disclosure risk) and correlations (data utility) by changing parameter values in our procedure.
Duncan [8] states that “in its most basic form, an R − U confidentiality map is the set of paired values
(R,U) of disclosure risk and data utility that correspond to various strategies for data release.” In our
models, ε changes to generate the R− U curve and lower values of ε correspond to lower levels of risk
and higher levels of privacy. As ε decreases, the privacy of our released data increases as defined by
ε-differential privacy. Low disclosure risk has good differential privacy, which says that “any possible
outcome of an analysis should be “almost” equally likely, independent of whether any individuals opts
into or opts out of the data set” [9]. In addition, since the Laplace scale parameter is Λ

kε
, the random

noise added to release ε-differentially private data increases as ε decreases (k increases at a slower rate
than ε decreases). This means that the released data or estimates are more noisy for lower values of ε.
Consequently, data utility should be lower for released data with more noise added. We examined the
exact trade-off between disclosure risk, ε, and data utility, correlation (ŷDPε ,y).

1) R− U Curve for Linear Mixed Models: For all values of ε, calculate the predicted rates:

JCRDP = ŷDPε = Xβ̂DP.51ε + ZûDP.49ε

For k = 1 or all of the data, calculate the predicted rates:

JCRglobal = ŷglobal = Xβ̂global + Zûglobal

Calculate the correlations between y and ŷglobal, ŷDPε . Finally, plot the correlations as a function of ε.
2) R− U Curve for Linear Models: For all values of ε, calculate the predicted rates:

JCRDPε = ŷDPε = Xβ̂DPε

For k = 1 or all of the data, calculate the predicted rates:

JCRglobal = ŷglobal = Xβ̂global
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Calculate the correlations between y and ŷglobal, ŷDPε . Finally, plot the correlations as a function of ε.
The LM only estimated industry means and did not include a time trend.

Figures 2 and 3 show the R-U Curves for the LMMs and LMs, respectively. Correlations decreased as
ε decreased, and all correlations of ŷDPε with y were lower than the global “best fit” correlation when
k = 1 (which would correspond to non-differentially private ε > 25). Since all correlations including the
one between y and ŷglobal were less than 0.40, the model did not fit the data well. This illustrates the
principle limitation of the differentially private estimator – more random effects were required to get a
good fit, detailed industry and time effects in particular, but such models were only feasible when ε > 25,
which is no protection at all. But for models with approximately 3,000 effects, degradation in correlation
over decreased values of ε was only slightly noticeable. Non-monotonicity was observed when most of
the noise was added to β versus u since there were only 21 random Laplace draws.

3) R-U Curve for Linear Mixed Models with Allocated Privacy: Additionally, we considered having
proportionally different levels of privacy for β and u within the total privacy budget of ε. Since there were
many more estimates of u (3,161) as compared to industry β (20), it may be reasonable to protect the
estimates of u with more privacy (lower ε). Figures 4 and 5 show u having 10% and 88% of the plotted
value of ε, respectively, while β accounts for the remainder. For example, in Figure 4, the five budgets
of ε used for u were 0.46, 0.4, 0.3, 0.2, and 0.1 while the budgets used for β were 4.05, 3.52, 2.64, 1.76,
and 0.88. Figures 6 and 7 show u having 1% and 97% of the plotted privacy value of ε, respectively.
Noticeable degradation is seen in Figure 6 when u is highly protected. For all figures except Figure 3,
the privacy budget of the time trend was kept at 2%.

4) An Improved LMM and Influential Observations: We also examined the effects of deleting all of
a county’s U observations on the estimates of variance components and fixed effects with a LMM that
included four parameters for lagged quarterly rates. The base fit of the model improved significantly
to a correlation of 49.67% as compared to just under 35% for the LMM including only a simple time
trend. The goal was also to bound the possible leave-1-out changes of our REML estimates, β̂, σ̂2

ξ ,and
σ̂2
uc for closer inspection for both the LMM and BLMM. We performed over three thousand leave-U-out

simulations for each county. For each simulation, the process is as follows:
• Define D˜U ≡ (y˜U , X˜U , Z˜U), differing by one county-industry combination (U-out);
• Fit REML estimates and analyze changes in β̂, σ̂2

ξ ,and σ̂2
uc.

Results for the leave U-out fixed effects indicate that all industry estimates are within 0.0002 of each
other except for public administration, which has a range of 0.003. The covariates for the lagged quarterly
rates were all within 0.001 of each other. The 0.1 and 99.9 percent quantiles for the variance components
are described in Table III.

Variance Component MLE 0.1% quantile 99.9% quantile
σ̂2
ξ 0.01045409 0.01043703 0.01046005

σ̂2
uc 0.00016302 0.00015722 0.00016330

TABLE III
VARIANCE ESTIMATE RANGES FROM LEAVING OUT ONE COUNTY

Results from the analysis of deleting influential observations from Section V indicate that all updated
estimates of fixed effects and variance components are well within the bounds of the leave U-out changes.
The county EBLUPs that were most affected by the removal of influential observations were always the
particular counties that these observations were in. The maximum change for the EBLUPs was 0.007828
(observation from county 3047) and the industry fixed effects was 0.00008281 (observation from county
661). Both of these observations came from observations with large û’s and large absolute values of
rpi . If we were to match these maximum changes correspond to four times the standard deviation of a
Laplace random variable, they produce Laplace scale parameters of 0.0015 and 0.000016, respectively. To
put things in perspective, the laplace scale parameter for the estimated fixed effects and EBLUPs in the
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sub-sample and aggregate approach when ε was unity was approximately 0.0002 and was ε was 3 was
approximately 0.00012. With no sub-sampling and the removal of an influential observation, the laplace
noise would only protect the fixed effects. Results for the BLMM focus on the county random effects.

B. Bayesian Linear Mixed Models
We analyzed the implications of the removal of influential observations on the ε-differential privacy of

our county random effects according to Section V-B.2. Predictably, in those models deleting observations
from small counties (3047 and 661) produced the largest proportional bin changes across all models.
Each model had 62,220 bins corresponding to 20 bins for each of the 3,111 county random effects. The
model deleting an observation from county 3047 had as few as 21 posterior samples in its smallest bin
(3,217 in its largest) and the model deleting an observation from county 661 had 3,458 posterior samples
in its largest bin (26 in its smallest). Both of these unusual counts occurred in the county effect from
which the influential observation was deleted. Comparing these results to the benchmark model with 500
observations in each bin and using the methodology developed in Section V-B.2, this corresponds to an
overall ε of 3.2.

We compared these results to random noise which is represented by the replicated benchmark model
that was fit to monitor convergence in Section V-B.3. The bin boundaries were fixed at the five percent
quantiles from the complete-data estimation. Hence, the expected count in each bin is 500. The replicated
model using the complete data had its smallest bin containing 382 posterior samples and its largest bin
containing 641 posterior samples. This corresponds to an overall ε of 0.27, which is illustrated in the
histogram of the bin counts shown in Figure 8 where the mode is 500, the distribution is symmetrical,
and the minimum and maximum on the horizontal axis define the inputs to computing ε. Since no rows
have been excluded from this experiment, the interpretation of ε is the deviation in the empirical differential
privacy that results from the imprecision of using 10,000 posterior samples.

The 32 models with deleted influential observations always had maximum and minimum bin counts
between the extremes of the replicated benchmark model and the models with deleted observations from
county 3047 or county 661. That is, the extreme values used to estimate ε empirically came from the
values computed when influential observations were deleted from these one of these two counties. A
histogram of the bin counts for the model deleting an influential observation from county 3047, which
defined the overall ε of 3.2, is shown in Figure 9.

Fig. 2. R-U Curve for JCR Linear Mixed Model with 49% ε budget for β and 49% for u

VII. DISCUSSION

Results are presented for JCR only; however, JDR and AR give similar results. The main difference in
the structure of AR is Λ, which is slightly larger. Thus, the Laplace scale parameter is also larger to account
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Fig. 3. R-U Curve for JCR Linear Model with 100% ε budget for β

Fig. 4. R-U Curve for JCR Linear Mixed Model with 88% ε budget for β and 10% for u

for the greater range of AR. In general, the more private we make our confidential data through Laplacian
noise, the less utility we receive from the released data. In this case, utility translates to estimates of the
differentially private JCRs (ŷDPε) that are produced from differentially private coefficient estimates (β̂DPε
or ûDPε). We note that the non-private MLE for this problem doesn’t fit very well, and the differentially
private MLEs are quite comparable – that is, they aren’t much worse. The problem arises when we try to
improve the fit of the base MLE; then, we must add more effects (factors with a large number of levels)
to the model and the differentially private MLE becomes infeasible.

The empirical DP analysis based on the BLMM shows that the use of a relatively diffuse, but proper
prior provides an estimated differential privacy of 3.2, which corresponds to maximal posterior odds of
about 25. We interpret this result as meaning that if the influential observations that we actually deleted
correctly depict those data rows that are most likely to change the LMM EBLUPs. Then, sampling from
the posterior distribution of the random effects and releasing one vector draw (an estimated random effect
for each county) from that sample has approximate ε−differential privacy of 3.2.

VIII. CONCLUSION

The applications of a two differentially private methods for releasing estimate from the linear mixed-
effects model allows some clear conclusions. The differentially private MLE is feasible in realistic
problems when the random effects are limited to one high-dimensional factor, county in our case. For
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Fig. 5. R-U Curve for JCR Linear Mixed Model with 10% ε budget for β and 88% for u

Fig. 6. R-U Curve for JCR Linear Mixed Model with 97% ε budget for β and 1% for u

the protection levels that are feasible, the difference between the differentially private estimator and the
MLE increases as the protection increases, as shown in our R-U plots. Our problem was chosen to give
the differentially private MLE a reasonable chance of success. In particular, the dependent variable is
bounded, which is not usually the case in detailed tabulations of continuous data–as routinely occur in
small area estimation or detailed industry data. The differentially private MLE is not likely to work well
for cases where there are several factors with many levels, as would be the case in our example if we
used both county and detailed industry effects.

The application of the Bayesian LMM to empirically estimate the differential privacy produced by
a diffuse but proper prior gave very encouraging results. This method is a computational brute-force
procedure that directly estimates ε. It is both feasible and practical for problems of the same degree of
complexity as the ones in which the DP MLE was feasible, but the procedure may also be useful for
more complex problems because the BLMM with a proper prior is not as delicate as the differentially
private MLE computed using the sub-sampling method, which is limited by the number of sub-samples
to models that are not as complex as the ones that can reasonably be fit with the BLMM.
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Fig. 7. R-U Curve for JCR Linear Mixed Model with 1% ε budget for β and 97% for u

Fig. 8. Histogram for the Replicated Model Including All Observations and Counties
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